Abstract
Wireless communication networks exploit positioning information to deliver personalized, context-aware services. On the other side, positioning information can improve the network performance through location aware routing, coverage management, enhanced security, power saving etc. Availability of position information strongly depends on existing infrastructure, such as cellular base stations and GPS satellites. In order to enhance the performance of indoor localization systems, where infrastructure is not available, the innovative solution presented in this paper considers also the negative information.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Want, R., Hopper, A., Falcao, V., Gibbons, J.: The Active Badge location system. ACM Transactions on Information Systems (TOIS) 10(1), 91–102 (1992)
Bahl, P., Padmanabhan, V.N.: RADAR: An in-building RF-based user location and tracking system. In: Proc. INFOCOM 2000, Tel Aviv, Israel, vol. 2, pp. 775–784 (March 2000)
LaMarca, A., Chawathe, Y., Consolvo, S., Hightower, J., Smith, I., Scott, J., Sohn, T., Howard, J., Hughes, J., Potter, F., Tabert, J., Powledge, P., Borriello, G., Schilit, B.: Place Lab: Device Positioning Using Radio Beacons in the Wild. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468, pp. 116–133. Springer, Heidelberg (2005)
De Luca, D., Mazzenga, F., Monti, C., Vari, M.: Performance evaluation of indoor localization techniques based on RF power measurements from active or passive devices. EURASIP Journal on Appl. Signal Processing 2006(1), 1–11 (2006)
Wu, C., Sheng, W., Zhang, Y.: Mobile self-localization using multi-dimensional scaling in robotic sensor networks. International Journal of Intelligent Control and System 11(3), 163–175 (2006)
Costa, J., Patwari, N., Hero, A.: Distributed weighted-multidimensional scaling for node localization in sensor networks. ACM Transactions of Sensor Networks (TOSN) 2(1), 39–64 (2006)
Doherty, L., Pister, K.S.J., Ghaoui, L.E.: Convex position estimation in wireless sensor networks. In: Proc. of IEEE INFOCOM, vol. 3, pp. 1655–1663 (2001)
Biswas, P., Ye, Y.: Semidefinite programming for ad hoc wireless sensor network localization. In: Proc. International Conference on Information Processing in Sensor Networks (IPSN 2004), Berkeley, CA (April 2004)
Savvides, A., Han, C., Srivastava, M.: Dynamic fine-grained localization in ad-hoc networks of sensors. In: 7th ACM International Conference on Mobile Computing and Networking (Mobicom), Rome, Italy, pp. 166–179 (July 2001)
Aslindi, N., Pahlavan, K., Alavi, B., Li, X.: A novel cooperative localization algorithm for indoor sensor networks. In: IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC 2006, Helsinki, Finland, pp. 1–6 (2006)
Liu, J., Zhang, Y.: Error control in distributed node self-localization. EURASIP Journal on Advances in Signal Processing (January 2008)
Hoffmann, J., Spranger, M., Gohring, D.: Making use of what you don’t see: Negative information in Markov localization. In: Proc. of IEEE/RSJ International Conference of Intelligent Robots and Systems (IROS), Alberta, Canada (August 2005)
Koch, W.: On negative information in tracking and sensor data fusion: discussion of selected examples. In: Proc. of 7th International Conference on Information Fusion, pp. 91–98 (2004)
Montemerlo, M., Thrun, S.: Simultaneous localization and mapping with unknown data association using FastSLAM. In: Proc. IEEE International Conference on Robotics and Automation, pp. 1985–1991 (2003)
Baggio, A., Langendoen, K.: Monte-Carlo localization for mobile wireless sensor networks. ACM Ad Hoc Networks 6(5), 718–733 (2008)
Mathworks: Matlab curve fitting toolbox, r2008b (2008)
Doyle, A.C.: The Sign of the Four (1890)
Rappaport, T.S.: Wireless communications principles and practices. Prentice-Hall (2002)
Stuedi, P., Chinellato, O., Alonso, G.: Connectivity in the presence of shadowing in 802.11 ad hoc networks. In: Proc. IEEE Wireless Communications and Networking Conference (WCNC), pp. 2225–2230 (March 2005)
Akl, R., Tummala, D., Li, X.: Indoor propagation modeling at 2.4 GHz for IEEE 802.11 networks. In: Proc. 6th IASTED International Multi-Conference on Wireless and Optical Communications, Banff (2006)
Sadiki, T., Paimblanc, P.: Modelling new indoor propagation models for WLAN based on empirical results. In: Proc. UKSim 2009: 11th International Conference on Computer Modelling and Simulation, Cambridge, England (March 2009)
Butterworth, K.S., Sowerby, K.W., Williamson, A.G.: Base station placement for in-building mobile communication systems to yield high capacity and efficiency. IEEE Trans. Communications 48(4), 658–669 (2000)
Agrawal, P., Patwari, N.: Correlated link shadow fading in multi-hop wireless networks. IEEE Transactions on Wireless Communications 8(8), 4024–4036 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Albano, M., Hadzic, S., Rodriguez, J. (2012). Use of Negative Information in Positioning Algorithms. In: Rodriguez, J., Tafazolli, R., Verikoukis, C. (eds) Mobile Multimedia Communications. MobiMedia 2010. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 77. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35155-6_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-35155-6_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-35154-9
Online ISBN: 978-3-642-35155-6
eBook Packages: Computer ScienceComputer Science (R0)