Skip to main content

Classification of Chain-Link and Other Data with Spherical SOM

  • Conference paper
Advances in Self-Organizing Maps

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 198))

  • 1321 Accesses

Abstract

A new classification method is proposed based on the spherical SOM that has been developed earlier for visualizing multidimensional data sets. Phase distances between labeled data on the spherical surface are computed. With these distances, a dendrogram can be constructed. Then, using the constructed dendrogram, a classification of each cluster group on the spherical surface, based on the label data was carried out. This method can be applied to various data sets. Here, the method was applied to the chain-link problem which can be considered as a particularly difficult one from a representational standpoint, and to the problem of separating parallel random number planes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tokutaka, H., Ohkita, M., Hai, Y., Fujimura, K., Oyabu, M.: Classification Using Topologically Preserving Spherical Self-Organizing Maps. In: Laaksonen, J., Honkela, T. (eds.) WSOM 2011. LNCS, vol. 6731, pp. 308–317. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Herrmann, L., Ultsch, A.: Clustering with Swarm Algorithms Compared to Emergent SOM. In: Príncipe, J.C., Miikkulainen, R. (eds.) WSOM 2009. LNCS, vol. 5629, pp. 80–88. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Hammer, B., Biehl, M., Bunte, K., Mokbel, B.: A General Framework for Dimensionality Reduction for Large Data Sets. In: Laaksonen, J., Honkela, T. (eds.) WSOM 2011. LNCS, vol. 6731, pp. 277–287. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. http://www.somj.com

  5. Ohkita, M., Tokutaka, H., Fujimura, K., Gonda, E.: Self-Organizing Maps and the tool. Springer Japan Inc. (2008) (in Japanese)

    Google Scholar 

  6. Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  7. Fisher, R.A.: The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics 7, 179–188 (1936)

    Google Scholar 

  8. http://www.ics.uci.edu/~mlearn/databases/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ohkita, M., Tokutaka, H., Ohki, M., Oyabu, M., Fujimura, K. (2013). Classification of Chain-Link and Other Data with Spherical SOM. In: Estévez, P., Príncipe, J., Zegers, P. (eds) Advances in Self-Organizing Maps. Advances in Intelligent Systems and Computing, vol 198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35230-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35230-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35229-4

  • Online ISBN: 978-3-642-35230-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics