Skip to main content

Adaptive SVM-Based Classification Systems Based on the Improved Endocrine-Based PSO Algorithm

  • Conference paper
Active Media Technology (AMT 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7669))

Included in the following conference series:

Abstract

In this study, we proposed an wrapped feature selection and SVM’s kernel parameters optimization scheme using Improved Artificial Endocrine System to get an optimal support vector machines classification system. By taking the advantage of the mechanisms of hormone action in Artificial Endocrine System, we can avoid to obtain local optimums and oscillations. We used the UCI database to evaluate the performance of the proposed scheme with the previous methods. The experiment results indicated that the proposed scheme can avoid local optimum and also reduce feature numbers significantly with a good-enough accuracy in high-complexity datasets. Moreover, by decreasing the number of unnecessary features, we can even improve the accuracy of classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Belacel, N., Boulassel, M.R.: Multicriteria Fuzzy Classification Procedure Profit: Methodology and Medical Application. Fuzzy Sets and Systems 141, 203–217 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Stevens, R., Goble, C., Baker, P., Brass, A.: A Classification of Tasks in Bioinformatics. Bioinformatics 17(2), 180–188 (2001)

    Article  Google Scholar 

  3. Mitra, V., Wang, C.J., Banerjee, S.: Text Classification: A Least Square Support Vector Machine Approach. Applied Soft Computing 7(3), 908–914 (2007)

    Article  Google Scholar 

  4. Zhang, G.P.: Neural Networks for Classification: A Survey. IEEE Transactions on Systems, Man, and Cybernetics—Part C: Applications and Reviews 30(4), 451–462 (2000)

    Article  Google Scholar 

  5. Hwang, W.-J., Wen, K.-W.: Fast kNN classification algorithm based on partial distance search. Electronics Letters 34(21), 2062–2063 (1998)

    Article  Google Scholar 

  6. Lewis, D.D.: Naive (Bayes) at Forty: The Independence Assumption in Information Retrieval. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 4–15. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  7. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, NY

    Google Scholar 

  8. Vapnik, V., Cortes, C.: Support-Vector Networks. Machine Learning 20(3), 273–297 (1995)

    MATH  Google Scholar 

  9. Lee, Y.-J., Mangasarian, O.L.: RSVM: Reduced Support Vector Machines. Data Mining Institute, Computer Science Department, University of Wisconsin (2001)

    Google Scholar 

  10. Chapelle, O., Haffner, P., Vapnik, V.N.: Support Vector Machines for Histogram-Based Image Classification. IEEE Transactions on Neural Networks 10(5), 1055–1064 (1999)

    Article  Google Scholar 

  11. Sebald, D.J., Bucklew, J.A.: Support Vector Machine Techniques for Nonlinear Equalization. IEEE Transactions on Signal Processing 48(11), 3217–3226 (2000)

    Article  Google Scholar 

  12. Suykens, J.A.K., Vandewalle, J.: Least Squares Support Vector Machine Classifiers. Neural Processing Letters 9, 293–300 (1999)

    Article  MathSciNet  Google Scholar 

  13. Hussein, F., Kharma, N., Ward, R.: Genetic Algorithm for Feature Selection and Weighting, a Review and Study. Pattern Recognition Letters 10(5), 335–347 (1989)

    Article  Google Scholar 

  14. Tu, C.-J., Chuang, L.-Y., Chang, J.-Y., Yang, C.-H.: Feature Selection using PSO-SVM. IAENG International Journal of Computer Science 33, 111–116 (2007)

    Google Scholar 

  15. Lin, K.-C., Chien, H.-Y.: CSO-based Feature Selection and Parameter Optimization for Support Vector Machine. In: JCPC Joint Conferences on Pervasive Computing, pp. 783–788 (2009)

    Google Scholar 

  16. Staelin, C.: Parameter Selection for Support Vector Machines. HP Labortory (2003)

    Google Scholar 

  17. Liu, S., Jia, C.Y., Ma, H.: A New Weighted Support Vector Machine with GA-based Parameter Selection. In: Proceedings of the 4th International Conference on Machine Learning and Cybernetics, vol. 7, pp. 4351–4355 (2005)

    Google Scholar 

  18. Huang, C.L., Wang, C.J.: A GA-based Feature Selection and Parameters Optimization for Support Vector Machines. Expert Systems with Application 31(2), 231–240 (2006)

    Article  Google Scholar 

  19. Lin, S.W., Ying, K.C., Chen, S.C., Lee, Z.J.: Particle Swarm Optimization for Parameter Determination and Feature Selection of Support Vector Machines. Expert Systems with Application 35(4), 1817–1824 (2008)

    Article  Google Scholar 

  20. Wang, L., Kang, Q., Wu, Q.-D.: Nature-inspired Computation - Effective Realization of Artificial Intelligence. Systems Engineering-Theory and Practice 5(27) (2007)

    Google Scholar 

  21. Chen, D.-B., Zhao, C.-X.: Particle Swarm Optimization based on Endocrine Regulation Mechanism. Control Theory and Applications 24(6), 126–134 (2007)

    Google Scholar 

  22. Hsu, C.W., Chang, C.C., Lin, C.J.: A Practical Guide to Support Vector Classification (2003), http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

  23. Hettich, S., Blake, C.L., Merz, C.J.: UCI Repository of Machine Learning Databases. Department of Information and Computer Science, University of California, Irvine, CA (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html

  24. Sugano, S., Ogata, T.: Emergence of Mind in Robots for Human Interface-Research Methodology and Robot Model. In: The Proceedings of IEEE International Conference on Robotics and Automation, pp. 1191–1198 (1966)

    Google Scholar 

  25. Neal, M., Timmis, J.: Timidity: A Useful Emotional Mechanism for robot control. Informatica 27, 197–204 (2003)

    MATH  Google Scholar 

  26. Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: The Proceedings of IEEE International Conference on Neural Networks IV, pp. 1942–1948 (1955)

    Google Scholar 

  27. Chen, D.-B., Zou, F.: A Multi-Objective Endocrine PSO Algorithm. In: The Proceedings of 2009 1st International Conference on Information Science and Engineering, December 26-28 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lin, KC., Hsu, SH., Hung, J.C. (2012). Adaptive SVM-Based Classification Systems Based on the Improved Endocrine-Based PSO Algorithm. In: Huang, R., Ghorbani, A.A., Pasi, G., Yamaguchi, T., Yen, N.Y., Jin, B. (eds) Active Media Technology. AMT 2012. Lecture Notes in Computer Science, vol 7669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35236-2_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35236-2_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35235-5

  • Online ISBN: 978-3-642-35236-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics