Skip to main content

Interval Scheduling and Colorful Independent Sets

  • Conference paper
Algorithms and Computation (ISAAC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7676))

Included in the following conference series:

  • 1571 Accesses

Abstract

The NP-hard Independent Set problem is to determine for a given graph G and an integer k whether G contains a set of k pairwise non-adjacent vertices. The problem has numerous applications in scheduling, including resource allocation and steel manufacturing. There, one encounters restricted graph classes such as 2-union graphs, which are edge-wise unions of two interval graphs on the same vertex set, or strip graphs, where additionally one of the two interval graphs is a disjoint union of cliques.

We prove NP-hardness of Independent Set on a very restricted subclass of 2-union graphs and identify natural parameterizations to chart the possibilities and limitations of effective polynomial-time preprocessing (kernelization) and fixed-parameter algorithms. Our algorithms benefit from novel formulations of the computational problems in terms of (list-)colored interval graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bafna, V., Narayanan, B.O., Ravi, R.: Nonoverlapping local alignments (weighted independent sets of axis-parallel rectangles). Discrete Appl. Math. 71(1-3), 41–53 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bar-Yehuda, R., Halldórsson, M.M., Naor, J., Shachnai, H., Shapira, I.: Scheduling split intervals. SIAM J. Comput. 36(1), 1–15 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Cross-composition: A new technique for kernelization lower bounds. In: Proc. 28th STACS. LIPIcs, vol. 9, pp. 165–176. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2011)

    Google Scholar 

  4. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13(3), 335–379 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chuzhoy, J., Ostrovsky, R., Rabani, Y.: Approximation algorithms for the job interval selection problem and related scheduling problems. Math. Oper. Res. 31(4), 730–738 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fellows, M.R., Hermelin, D., Rosamond, F.A., Vialette, S.: On the parameterized complexity of multiple-interval graph problems. Theor. Comput. Sci. 410(1), 53–61 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pacific J. Math. 15(3), 835–855 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  8. Halldórsson, M.M., Karlsson, R.K.: Strip Graphs: Recognition and Scheduling. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 137–146. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Höhn, W., König, F.G., Möhring, R.H., Lübbecke, M.E.: Integrated sequencing and scheduling in coil coating. Manage. Sci. 57(4), 647–666 (2011)

    Article  MATH  Google Scholar 

  10. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jansen, K.: Generalizations of assignments of tasks with interval times. Technical report, Universität Trier (1991)

    Google Scholar 

  12. Jansen, K.: Transfer flow graphs. Discrete Math. 115(1-3), 187–199 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jiang, M.: On the parameterized complexity of some optimization problems related to multiple-interval graphs. Theor. Comput. Sci. 411, 4253–4262 (2010)

    Article  MATH  Google Scholar 

  14. Kolen, A.W., Lenstra, J.K., Papadimitriou, C.H., Spieksma, F.C.R.: Interval scheduling: A survey. Nav. Res. Log. 54(5), 530–543 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Nakajima, K., Hakimi, S.L.: Complexity results for scheduling tasks with discrete starting times. J. Algorithms 3(4), 344–361 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sbihi, N.: Algorithme de recherche d’un stable de cardinalite maximum dans un graphe sans etoile. Discrete Math. 29(1), 53–76 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  17. Spieksma, F.C.R.: On the approximability of an interval scheduling problem. J. Sched. 2(5), 215–227 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

van Bevern, R., Mnich, M., Niedermeier, R., Weller, M. (2012). Interval Scheduling and Colorful Independent Sets. In: Chao, KM., Hsu, Ts., Lee, DT. (eds) Algorithms and Computation. ISAAC 2012. Lecture Notes in Computer Science, vol 7676. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35261-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35261-4_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35260-7

  • Online ISBN: 978-3-642-35261-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics