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Abstract. Numerous applications in scheduling, such as resource allocation or steel
manufacturing, can be modeled using the NP-hard Independent Set problem (given
an undirected graph and an integer k, find a set of at least k pairwise non-adjacent
vertices). Here, one encounters special graph classes like 2-union graphs (edge-wise
unions of two interval graphs) and strip graphs (edge-wise unions of an interval graph
and a cluster graph), on which Independent Set remains NP-hard but admits
constant-ratio approximations in polynomial time.

We study the parameterized complexity of Independent Set on 2-union graphs
and on subclasses like strip graphs. Our investigations significantly benefit from a new
structural “compactness” parameter of interval graphs and novel problem formulations
using vertex-colored interval graphs. Our main contributions are:

1. We show a complexity dichotomy: restricted to graph classes closed under
induced subgraphs and disjoint unions, Independent Set is polynomial-time solvable
if both input interval graphs are cluster graphs, and is NP-hard otherwise.

2. We chart the possibilities and limits of effective polynomial-time preprocessing
(also known as kernelization).

3. We extend Halldórsson and Karlsson (2006)’s fixed-parameter algorithm for
Independent Set on strip graphs parameterized by the structural parameter “maxi-
mum number of live jobs” to show that the problem (also known as Job Interval
Selection) is fixed-parameter tractable with respect to the parameter k and generalize
their algorithm from strip graphs to 2-union graphs. Preliminary experiments with
random data indicate that Job Interval Selection with up to fifteen jobs and 5 · 105

intervals can be solved optimally in less than five minutes.

∗A preliminary version of this article appeared in the proceedings of the 23rd International
Symposium on Algorithms and Computation (ISAAC 2012), volume 7676 in Lecture Notes
in Computer Science, pp. 247–256, Springer, 2012. Besides providing full proof details, this
revised and extended version improves running times, shows that Job Interval Selection
is fixed-parameter tractable with respect to the standard parameter k, and introduces the
parameter c-compactness. Moreover, it adds an experimental evaluation of the algorithms.
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1 Introduction

Many fundamental scheduling problems can be modeled as finding maximum
independent sets in generalizations of interval graphs (Kolen et al., 2007). Intu-
itively, finding a maximum independent set corresponds to scheduling a maximum
number of jobs (represented by time intervals) on a limited set of machines in a
given time frame.

In this context, we consider two popular generalizations of interval graphs,
namely 2-union graphs (Bar-Yehuda et al., 2006) and strip graphs (Halldórsson
and Karlsson, 2006): An undirected graph G = (V,E) is a 2-union graph if it is
the edge-wise union of two interval graphs G1 = (V,E1) and G2 = (V,E2) on
the same vertex set V , that is, G = (V,E1 ∪ E2), where an interval graph is
a graph whose vertices one-to-one correspond to intervals on the real line and
there is an edge between two vertices if and only if their intervals intersect. If
one of the two interval graphs G1 or G2 is even a cluster graph, that is, if it
consists of pairwise disjoint cliques, then G is called a strip graph.

Examples for solving scheduling problems using (weighted) Independent
Set on 2-union graphs include resource allocation scenarios (Bar-Yehuda et al.,
2006) and coil coating in steel manufacturing (Höhn et al., 2011; Möhring, 2011).
Formally, we are interested in the following problem:

2-Union Independent Set
Input: Two interval graphs G1 = (V,E1), G2 = (V,E2), and a natural

number k.
Question: Is there a size-k independent set in G = (V,E1 ∪ E2)?

If G is a strip graph, then the problem is known as Job Interval Selection
(Spieksma, 1999). We make two main conceptual contributions:

1. Since 2-Union Independent Set is NP-hard (Bar-Yehuda et al., 2006),
there is little hope to find optimal solutions within polynomial time. Instead of
following the route of approximation algorithms and heuristics (Spieksma, 1999;
Bar-Yehuda et al., 2006; Höhn et al., 2011), we aim for solving the problem
optimally using fixed-parameter algorithms (Downey and Fellows, 2013; Flum
and Grohe, 2006; Niedermeier, 2006), a concept to date largely neglected in the
field of scheduling problems (Marx, 2011; Mnich and Wiese, 2014).

2. In order to obtain our results, we provide “colorful reformulations” of
2-Union Independent Set and Job Interval Selection, providing char-
acterizations of these problems in terms of vertex-colored interval graphs, thus
replacing the conceptually more complicated 2-union and strip graphs.

1.1 Known Results

Results for 2-Union Independent Set. Checking whether a graph is a
2-union graph is NP-hard (Gyárfas and West, 1995; Jiang, 2013). Therefore, we
require two separate interval graphs as input to 2-Union Independent Set.
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To date, a number of polynomial-time approximation algorithms has been
devised to solve 2-Union Independent Set. Bar-Yehuda et al. (2006) showed
that vertex-weighted 2-Union Independent Set admits a polynomial-time
ratio-4 approximation. For the special case of so-called K1,5-free graphs (which
comprises the case that both input graphs are proper interval graphs), Bafna
et al. (1996) provided a ratio-3.25 approximation.

In the context of applying 2-Union Independent Set to coil coating—a
process in steel manufacturing—Höhn et al. (2011) showed NP-hardness of 2-
Union Independent Set on so-called M -composite 2-union graphs (which
arise in their application), and showed a dynamic programming based algorithm
running in polynomial time for constant M , where the degree of the polynomial
depends on M . They additionally provided experimental studies based on
heuristics using mathematical programming.

Regarding parameterized complexity, Jiang (2010) proved that 2-Union
Independent Set is W[1]-hard parameterized by the independent set size k,
thus excluding any hope for fixed-parameter tractability with respect to k.
Jiang’s W[1]-hardness result holds even when both input graphs are proper
interval graphs.

Results for Job Interval Selection. Job Interval Selection was intro-
duced by Nakajima and Hakimi (1982) and was shown APX-hard by Spieksma
(1999), who also provided a ratio-2 greedy approximation algorithm. Chuzhoy
et al. (2006) improved this to a ratio-1.582 approximation algorithm. Halldórsson
and Karlsson (2006) showed fixed-parameter tractability results for Job Inter-
val Selection in terms of the structural parameter “maximum number of live
jobs” and in terms of the parameter “total number of jobs”. Moreover, they
showed that recognizing strip graphs is NP-hard.

1.2 Our Results

We provide a refined computational complexity analysis for 2-Union Indepen-
dent Set. Herein, our results mainly touch parameterized complexity.

We start by proving a complexity dichotomy that shows that all problem
variants encountered in our work remain NP-hard: roughly speaking, we show
that Independent Set is polynomial-time solvable if the input is the edge-wise
union of two cluster graphs, while it is NP-hard otherwise.

Results for Job Interval Selection. We complement known polynomial-
time approximability results (Spieksma, 1999; Chuzhoy et al., 2006) for Job
Interval Selection with parameterized complexity results and extend the
tractability results by Halldórsson and Karlsson (2006) in several ways:

1. We generalize their fixed-parameter algorithm for Job Interval Selec-
tion parameterized by the maximum number of “live jobs” to 2-Union Inde-
pendent Set. Moreover, for Job Interval Selection, we show that it can be
turned into a fixed-parameter algorithm with respect to the parameter k (“number
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of selected intervals”). Note that the latter appears to be impossible for 2-Union
Independent Set, which is W[1]-hard for the parameter k (Jiang, 2010).

2. We prove the non-existence of polynomial-size problem kernels for
Job Interval Selection with respect to k and structural parameters like
the maximum clique size ω, thus lowering hopes for provably efficient and
effective preprocessing.

3. We show that, if the input graph is the edge-wise union of a cluster graph
and a proper interval graph, then Job Interval Selection admits a problem
kernel comprising 4k2ω intervals that can be computed in linear time.

Results for 2-Union Independent Set. Since 2-Union Independent Set
is W[1]-hard with respect to the parameter k (Jiang, 2010) and NP-hard even
when natural graph parameters like “maximum clique size ω” or “maximum
vertex degree ∆” are constants (which is implied by our complexity dichotomy),
2-Union Independent Set is unlikely to be fixed-parameter tractable for any
of these parameters.

However, we identify a new natural interval graph parameter that highly
influences the computational complexity of 2-Union Independent Set: we
call an interval graph c-compact if its intervals are representable using at most c
distinct start and end points. That is, c is the “number of numbers” required
in an interval representation. Similar “number of numbers” parameters have
previously been exploited to obtain fixed-parameter algorithms for problems
unrelated to interval graphs (Fellows et al., 2012).

We use c∀ to denote the minimum number such that both input interval
graphs are c∀-compact and c∃ to denote the minimum number such that at least
one input interval graph is c∃-compact. We obtain the following results:

1. We give a simple polynomial-time data reduction rule for 2-Union Inde-
pendent Set. The analysis of its effectiveness naturally leads to the compactness
parameter: the reduction rule yields a c3∀-vertex problem kernel. This improves to
a 2c2∀-vertex problem kernel if one of the input graphs is a proper interval graph.

2. The problem kernel with respect to c∀ shows that 2-Union Independent
Set is fixed-parameter tractable with respect to c∀. By generalizing Halldórsson
and Karlsson (2006)’s fixed-parameter algorithm from Job Interval Selec-
tion to 2-Union Independent Set, we improve this to a time-O(2c∃ · n)
fixed-parameter algorithm for the parameter c∃ ≤ c∀.

Table 1 summarizes our results. Experiments with random data indicate that,
within less than five minutes, one can optimally solve Job Interval Selection
with up to fifteen jobs and 5 · 105 intervals and 2-Union Independent Set
with c∃ ≤ 15 and 5 · 105 intervals.
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Table 1: Overview of parameterized complexity results for Job Interval
Selection, where G2—one of the two input graphs—is a cluster graph, and
2-Union Independent Set, where G2 is any interval graph. Results for
various graph classes of G1—the other input graph—are shown. The complexity
dichotomy in Theorem 1 shows that all these problem variants remain NP-hard.

Class of G1 Job Interval Selection 2-Union Independent Set

interval randomized FPT algorithm:
O(5.5k · n) time (Theorem 4)

No polynomial-size kernel
w. r. t. k and ω (Theorem 5)

FPT algorithm: O(2c∃ ·n) time
(Theorem 7)

problem kernel: c3∀ vertices in
O(n log2 n) time (Theorem 8)

proper interval problem kernel: 4k2ω vertices
in O(n) time (Theorem 6)

problem kernel: 2c2∀ vertices in
O(n log2 n) time (Theorem 8)

Organization of this Work. In Section 2, we introduce basic notation and
the concepts of parameterized algorithmics.

Section 3 introduces the compactness parameter for interval graphs and some
basic observations on compactness. In the remaining sections, we assume to
work on c-compact representations of interval graphs such that c is minimum.

Section 4 presents our colored model of 2-Union Independent Set and
Job Interval Selection and discusses pros and cons of the new model.

Section 5 presents a computational complexity dichotomy that has conse-
quences both for Job Interval Selection and 2-Union Independent Set.

Section 6 presents our results specific to Job Interval Selection, whereas
Section 7 contains the results for the more general 2-Union Independent Set.

Finally, we present experimental results in Section 8 and conclude in Section 9.

2 Preliminaries

Throughout the work, we use the notation [c] as shorthand for the sub-
set {1, 2, . . . , c} of natural numbers.

We consider undirected, finite graphs G = (V,E) with vertex set V (G)
and edge set E(G). If not stated otherwise, we use n := |V | and m := |E|.
Two vertices v, w ∈ V are adjacent or neighbors if {v, w} ∈ E. The open
neighborhood NG(v) of a vertex v ∈ V is the set of vertices that are adjacent
to v, the closed neighborhood is NG[v] := NG(v) ∪ {v}. For a vertex set U ⊆ V ,
we define NG[U ] :=

⋃
v∈U NG[v]. If the graph G is clear from context, we drop

the subscript G. For a vertex set V ′ ⊆ V , the induced subgraph G[V ′] is the
graph obtained from G by deleting all vertices in V \ V ′.

An independent set is a set of pairwise non-adjacent vertices. A matching is
a set of pairwise disjoint edges. The chromatic index χ′(G) of G is the minimum
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number of colors required in a proper edge coloring, that is, in a coloring of edges
of G such that no pair of edges sharing a vertex has the same color.

A path in G from v1 to v` is a sequence (v1, v2, . . . , v`) ∈ V ` of vertices
with {vi, vi+1} ∈ E for i ∈ [` − 1]. Its length is `− 1. We denote a path on `
vertices by P`. Two vertices v and w are connected in G if there is a path
from v to w in G. A connected component of G is a maximal set of pairwise
connected vertices. If in each connected component of G, all its vertices are
pairwise adjacent (that is, they form a clique), then we call G a cluster graph.
Equivalently, a graph is a cluster graph if and only if it does not contain a P3 as
induced subgraph.

The disjoint union of two graphs G1 = (V1, E1) and G2 = (V2, E2) is
the graph G1 ] G2 = (V1 ] V2, E1 ] E2), where V1 ∩ V2 = ∅. The edge-wise
union of two graphs G1 = (V,E1) and G2 = (V,E2) on the same vertex set is
G1 ∪G2 = (V,E1 ∪E2). A class of graphs C is closed under induced subgraphs if
G = (V,E) ∈ C implies G[V ′] ∈ C for any V ′ ⊆ V . A class of graphs C is closed
under disjoint unions if G1, G2 ∈ C implies G1 ]G2 ∈ C.

An interval graph is a graph whose vertices can be represented as closed intervals
on the real line such that two vertices v and w are adjacent if and only if
the intervals corresponding to v and w intersect. We denote the start point
of the interval associated with v by vs and its end point by ve. A graph is a
proper interval graph if it allows for an interval representation such that for
no two intervals v and w it holds that v ( w. Equivalently, proper interval
graphs are precisely those interval graphs that do not contain a K1,3 as induced
subgraph (Brandstädt et al., 1999).

Fixed-Parameter Algorithms. The main idea in fixed-parameter algorithms
is to accept exponential running time, which is seemingly inevitable in solving
NP-hard problems, but to restrict it to one aspect of the problem, the parameter.
More precisely, a problem Π is fixed-parameter tractable (FPT) with respect to
a parameter k if there is an algorithm solving any instance of Π with size n in
f(k) · poly(n) time for some computable function f (Downey and Fellows, 2013;
Flum and Grohe, 2006; Niedermeier, 2006). Such an algorithm is potentially
efficient for small values of k.

Problem Kernelization. One way of deriving fixed-parameter algorithms is
problem kernelization (Guo and Niedermeier, 2007; Kratsch, 2014). As a formal
approach of describing efficient data reduction that preserves optimal solutions,
problem kernelization is a powerful tool for attacking NP-hard problems. A
kernelization algorithm consists of polynomial-time executable data reduction
rules that, applied to any instance x with parameter k, yield an equivalent
instance x′ with parameter k′, such that both the size |x′| and k′ are bounded
by some functions g and g′ in k, respectively. The function g is referred to as
the size of the problem kernel (x′, k′). Mostly, the focus lies on finding problem
kernels of polynomial size.
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3 Compact Interval Graphs

A parameter that we will see to highly influence the computational complexity
of 2-Union Independent Set is the “compactness” of an interval graph,
which corresponds to the number of distinct numbers required in its interval
representation.

Definition 1. An interval representation is c-compact if the start and end point
of each interval lies in [c]. Moreover, the intervals are required to be sorted by
increasing start points.

An interval graph is c-compact if it admits a c-compact interval representation.

In this work, we state all running times under the assumption that a c-compact
interval representation for minimum c is given. We show in the following that
such a representation can be efficiently computed. To this end, we make a few
observations.

Observation 1. Let G be an interval graph and c be the minimum integer such
that G is c-compact. Then G has exactly c maximal cliques.

Proof. Let c′ be the number of maximal cliques in G. We show c = c′ by proving
c′ ≤ c and c ≤ c′ independently.

First, it is easy to see that a c-compact interval graph has at most c maximal
cliques: each interval end point ve gives rise to at most one maximal clique,
which consists of the intervals containing the point ve. Hence, c′ ≤ c.

Second, the interval graph G allows for an ordering of its c′ maximal cliques
such that the cliques containing an arbitrary vertex occur consecutively in the
ordering (Fulkerson and Gross, 1965). Hence, a c′-compact interval representation
can be constructed in which each vertex v is represented by the interval [vs, ve],
where vs is the number of the first maximal clique containing v and ve is the
number of the last maximal clique containing v. It follows that c ≤ c′.

From Observation 1, it immediately follows that

Observation 2. An n-vertex interval graph is n-compact.

In the remainder of this article, we will assume to be given a c-compact rep-
resentation for minimum c. This assumption is justified by the fact that such
a c-compact representation is computable in O(n log n) time from an arbitrary
interval representation or even in linear time from a graph given as adjacency list.

Observation 3. Any interval representation of an interval graph G can be
converted into a c-compact representation for G in O(n log n) time such that

i) at each position in [c], there is an interval start point and an interval end
point, and

ii) c is the minimum number such that G is c-compact.
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Proof. We first sort all event points (start or end points of intervals) in increasing
order in O(n log n) time. Then, in linear time, we iterate over all event points
in increasing order and move each event point to the smallest possible integer
position that maintains all pairwise intersections. It remains to show (i) and (ii).

(i) First observe that every interval start point vs is also an end point for
some interval: otherwise, we would have moved the event point v′e (possibly,
v′e = ve) that directly follows vs to the position v′e − 1, maintaining all pairwise
intersections. It follows that G is c′-compact, where c′ is the number of different
end point positions.

Second, every interval end point ve is also a start point for some interval:
otherwise, we could have moved ve to the position ve−1 maintaining all pairwise
intersections. It follows that each end point ve gives rise to a distinct maximal
clique, because the interval starting at ve cannot be part of the maximal cliques
raised by earlier end points.

(ii) From (i), it follows that, for any two positions i, j of event points, the set
of intervals containing i and the set of intervals containing j are distinct and,
therefore, i and j give rise to distinct maximal cliques in G. Thus, our algorithm
computes a c′-compact representation of G with c′ ≤ c, where c is the number
of maximal cliques in G. From Observation 1, it follows that c′ is the minimum
number such that G is c′-compact.

If the input graph is given in form of an adjacency list, we can compute a
c-compact representation for minimum c in linear time.

Observation 4. Given an interval graph G as adjacency list, a c-compact
representation for minimum c can be computed in O(n+m) time.

Proof. Using a linear-time algorithm by Corneil et al. (2009, Section 8), we
obtain an n-compact interval representation of G. Using this, we can execute
the algorithm in the proof of Observation 3 in linear time, since the list of sorted
event points can be obtained in linear time using counting sort: the list has
n elements and the sorting keys are integers not exceeding n.

4 Colorful Independent Sets

Many of our results significantly benefit from a novel but natural embedding of
2-Union Independent Set into a more general problem: Colorful Inde-
pendent Set with Lists. We discuss this embedding in the following.

4.1 Colorful Independent Sets and Job Interval Selection

The first step in formalizing 2-Union Independent Set as Colorful In-
dependent Set with Lists is an alternative formulation of the classical
scheduling problem Job Interval Selection.

The task in Job Interval Selection is to execute a maximum number of
jobs out of a given set, where each job has multiple possible execution intervals,
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each job is executed at most once, and a machine can only execute one job at a
time. We formally state this problem in terms of colored interval graphs, where
the colors correspond to jobs and intervals of one color correspond to multiple
possible execution times of the same job:

Job Interval Selection
Input: An interval graph G = (V,E), a coloring col : V → [γ], and a

natural number k.
Question: Is there a size-k colorful independent set in G?

Here, colorful means that no two vertices of the independent set have the same
color.

Note that the colored formulation of Job Interval Selection is indeed
equivalent to the known formulation (Spieksma, 1999) as special case of 2-Union
Independent Set, where one input interval graph is a cluster graph:

Input: An interval graph G1 = (V,E1), a cluster graph G2 = (V,E2), and
a natural number k.

Question: Is there a size-k independent set in G = (V,E1 ∪ E2)?

In this second formulation, the maximal cliques of G2 correspond to jobs, and
the intervals in G1 that are part of the same maximal clique in G2 correspond to
multiple possible execution times of the same job. That is, the maximal cliques
in G2 one-to-one correspond to the colors in the colorful problem formulation.

In Section 6.2, we restate the fixed-parameter algorithms for Job Interval
Selection by Halldórsson and Karlsson (2006) in terms of our colorful formula-
tion. This formulation uncouples the algorithms from the geometric arguments
originally used by Halldórsson and Karlsson (2006) and allows for a more com-
binatorial point of view. Exploiting this, we turn Halldórsson and Karlsson
(2006)’s fixed-parameter algorithms for the total number of jobs (which translates
to the number γ of colors in our formulation) into a fixed-parameter algorithm
for the smaller parameter k—the number of jobs we want to execute.

4.2 From Strip Graphs to 2-Union Graphs

Our more combinatorially stated version of Halldórsson and Karlsson (2006)’s
fixed-parameter algorithm easily applies to Colorful Independent Set with
Lists, which is a canonical generalization of Job Interval Selection:

Colorful Independent Set with Lists
Input: An interval graph G = (V,E), a list-coloring col : V → 2[γ], and a

natural number k.
Question: Is there a size-k colorful independent set in G?

Here, colorful means that the intersection of the color sets of any two vertices in
the independent set is empty.

We will later show that Colorful Independent Set with Lists is actually
even more general than 2-Union Independent Set. The colored reformulation
turned out to be the key in generalizing Halldórsson and Karlsson (2006)’s
algorithm for Job Interval Selection to 2-Union Independent Set.
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4.3 Advantages and Limitations of the Model

The colorful formulation of Job Interval Selection helps us to transform
Halldórsson and Karlsson (2006)’s fixed-parameter algorithm for the parameter
“number γ of colors” into a fixed-parameter algorithm for the parameter “size k
of the sought colorful independent set”, where γ ≤ k. Moreover, the algorithm
for the colorful formulation of Job Interval Selection easily generalizes to
Colorful Independent Set with Lists and, as we will see, to 2-Union
Independent Set.

The advantage of considering Colorful Independent Set with Lists
instead of 2-Union Independent Set is that one can concentrate on a single
given interval graph instead of two merged ones, thus making the numerous
structural results on interval graphs applicable. Possibly, the colorful view on
finding independent sets and scheduling might be useful in further studies.

Not always, however, the colorful viewpoint is superior to the geometric one.
Herein, it is important to note that Colorful Independent Set with Lists
is actually a more general problem than 2-Union Independent Set and it
is cumbersome to formulate precisely 2-Union Independent Set in terms of
Colorful Independent Set with Lists. Thus, when exploiting the specific
combinatorial properties of 2-Union Independent Set, for example in the
kernelization algorithm in Section 7, the colored model is not helpful.

Moreover, in the following Section 5, we prove hardness results for finding
independent sets not only on 2-union and strip graphs. Hence, the colorful model
is not exploited there.

5 A Complexity Dichotomy

In this section, we determine the computational complexity of Independent
Set on edge-wise unions of graphs in dependence of the allowed input graph
classes. Formally, we define the considered problem as follows:

Common Independent Set
Input: Two graphs G1 = (V,E1), G2 = (V,E2), and a natural number k.
Question: Is there a size-k independent set in G = (V,E1 ∪ E2)?

Note that Common Independent Set contains 2-Union Independent Set
as special case since the only difference is that it does not restrict the two input
graphs to be interval graphs.

If we assume that the input graphs G1 and G2 are members in a graph class
that is closed under induced subgraphs and disjoint unions (as, for example, the
widely studied chordal graphs and, in particular, interval graphs, cluster graphs,
and forests (Brandstädt et al., 1999)), we can use the main result of this section
to precisely state for which classes Common Independent Set is NP-hard and
for which it is polynomial-time solvable, thus giving a complexity dichotomy of
the problem.
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Now, we first precisely state the dichotomy theorem. Since it is quite technical,
we immediately illustrate it by some examples in form of implications to the
complexity of Job Interval Selection and 2-Union Independent Set. We
conclude the section with the proof of the theorem.

Theorem 1. Let C1 and C2 be graph classes such that

• C1 and C2 are closed under disjoint unions and induced subgraphs, and

• C1 and C2 each contain at least one graph that has an edge.

Then, Common Independent Set restricted to input graphs G1 ∈ C1 and
G2 ∈ C2

i) is solvable in O(n1.5) time if C1 and C2 only contain cluster graphs, and

ii) NP-hard otherwise.

We illustrate Theorem 1 using some examples. First, choose C1 = C2 to be
the class of interval graphs that have maximum degree 2 and maximum clique
size 2. Since P3 is an interval graph but not a cluster graph in C1, we obtain the
following NP-hardness result for 2-Union Independent Set:

Corollary 1. 2-Union Independent Set is NP-hard even if both of the
following hold:

• the maximum degree of each input interval graphs is 2,

• the maximum clique size of each input interval graph is 2.

Now, choose C1 to be the class of disjoint unions of paths of length at most two
and C2 to be the class of cluster graphs of clique size at most two. Then, we
have P3 ∈ C1, which is not a cluster graph and, since disjoint unions of paths
are interval graphs, we obtain the result that 2-Union Independent Set is
NP-hard even if one input interval graph is a cluster graph consisting of cliques
of size two and if the other is a disjoint union of paths of length at most two.
Transferring this to the colored model as described in Section 4, we obtain:

Corollary 2. Job Interval Selection is NP-hard even if the input interval
graph is a disjoint union of paths of length at most two and contains each color
at most two times.

It remains to prove Theorem 1. For the first part of the theorem, Bar-Yehuda
et al. (2006) and Halldórsson and Karlsson (2006) mentioned that Common
Independent Set is polynomial-time solvable if both input graphs are cluster
graphs. We prove here an explicit upper bound on the running time.

Lemma 1. Common Independent Set is solvable in O(n1.5) time if both
input interval graphs are cluster graphs.
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Proof. Let G1 = (V,E1), G2 = (V,E2) be cluster graphs on n vertices, and
let G = (V,E1 ∪ E2). Let Ci denote the set of connected components (cliques)
of Gi for i ∈ {1, 2}. Define a bipartite graph H = (C1]C2, EH) with edge set EH
such that there is an edge {U1, U2} ∈ EH if and only if there is a vertex v ∈ V
that occurs in clique U1 of G1 and in clique U2 of G2. We claim that G has an
independent set of size k if and only if H has a matching of size k.

First, let I be an independent set of size k for G. We construct a matching M
in H. To this end, for each v ∈ I, add an edge {U1, U2} to M , where U1 is
the clique in G1 that contains v and U2 is the clique in G2 that contains v. To
verify that M is a matching in H, observe that each clique of G1 or G2 can
contain only one vertex of I. Therefore, the edges in M are pairwise disjoint
and |M | = |I| = k.

Second, let M be a matching of size k in H. We construct an independent
set I for G with |I| = k as follows: for each edge {U1, U2} ∈ M , include an
arbitrary vertex contained in both U1 and U2 in I. Since each clique of G1 or G2

is incident to at most one edge of M , we have chosen at most one vertex per
clique of G1 and G2, respectively. Hence, I is an independent set. Furthermore,
this implies that we did not choose a vertex twice, so |I| = |M | = k. This
completes the proof of the claim.

It remains to prove the running time. Note that we can verify in linear time
that a graph is a cluster graph. Moreover, its connected components can be
listed in linear time using depth first search. Hence, also the bipartite graph H
is computable in linear time. Moreover, by construction, the graph H has
at most n edges, and, therefore, we can compute a maximum matching in H
in O(n1.5) time using the algorithm of Hopcroft and Karp (Schrijver, 2003,
Theorem 16.4).

We point out that Lemma 1 generalizes to finding a maximum-weight indepen-
dent set if the vertices in the input cluster graphs have weights; to this end,
we compute a weighted maximum matching in the auxiliary bipartite graph,
where each edge is assigned the maximum weight of the vertices occurring in
both clusters it connects.

To prove the second part of Theorem 1, we will employ a reduction from 3-SAT.

3-SAT
Input: A Boolean formula φ in conjunctive normal form with at most

three variables per clause.
Question: Does φ have a satisfying assignment?

In fact, we will see two very similar reductions from 3-SAT to Common In-
dependent Set, where the second is an extension of the first. This has the
following benefits. The first reduction is an adaption of a simple NP-hardness
reduction by Garey et al. (1976) and, while not sufficient to show Theorem 1, it
has properties that we will exploit to exclude polynomial-size problem kernels
for Job Interval Selection in Section 6.3:
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Lemma 2. In polynomial time, a 3-SAT instance φ can be reduced to a
Common Independent Set instance (G1, G2, k) such that

i) G1 consists of pairwise disjoint paths of length at most two and

ii) G2 consists of k connected components, each of which is a triangle or an
edge.

Moreover, k is proportional to the number of clauses in φ.

This first reduction, which we will use to prove Lemma 2, can then be modified
to prove the following lemma, which we will exploit to show Theorem 1. Note
that, in comparison to Lemma 2, the following lemma restricts G2 to consist
only of isolated edges and vertices. A polynomial-time many-one reduction
that additionally ensures G2 to have k connected components, like in Lemma 2,
does not exist unless P = NP: in this case, Common Independent Set is
polynomial-time solvable using 2-Sat.

Lemma 3. In polynomial time, a 3-SAT instance φ can be reduced to a
Common Independent Set instance (G1, G2, k) such that

i) G1 consists of pairwise disjoint paths of length at most two,

ii) G2 consists only of isolated edges and vertices, and

iii) G1 ∪G2 has chromatic index three.

Moreover, k is proportional to the number of clauses in φ.

Proof of Lemmas 2 and 3. We first show Lemma 2. To this end, we transform a
3-SAT formula φ into three graphs G′1, G

′
2, and G′3. The “three graphs approach”

will easily allow us to show that the edge-wise union G1 := G′1 ∪G′3 consists of
pairwise disjoint paths of length at most two and that G2 := G′2 consists of k
pairwise disjoint triangles and edges.

We now give the details of the construction. Let φ be a formula in conjunctive
normal form with the clauses C1, . . . , Cm, each of which contains at most three
variables from the variable set {x1, . . . , xn}. For a variable xi, let mi denote
the number of clauses in φ that contain xi. For each clause Cj in φ, create the
gadget shown in Figure 1, where an edge labeled ` ∈ {1, 2, 3} belongs to G′`. We
call the non-triangle vertices leaves and the non-triangle edges antennas. With
each variable xi in Cj , we associate a leaf vertex Cj(xi).

For each variable xi, create a cycle gadget Xi (as illustrated in Figure 2), with
2mi edges, alternatingly labeled 2 and 3, and 2mi vertices, which we alternatingly
call T-vertex and F-vertex.

For each variable xi of a clause Cj , we merge the leaf vertex Cj(xi) with
a vertex of the variable gadget Xi for the variable xi as follows: if xi appears
non-negated in Cj , then we identify Cj(xi) with an F-vertex of Xi, otherwise, we
identify Cj(xi) with a T-vertex of Xi. Since Xi has mi pairwise disjoint edges
with label 3, each of which has one F- and one T-vertex, we can realize all these
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Figure 1: Solid edges form the gadget for a clause Cj containing the variables x1,
x2, and x3. With each variable xi, we associate a leaf vertex Cj(xi), which
will be merged with either a T- or an F-vertex in the gadget for variable xi
(Figure 2), depending on whether Cj contains the variable xi negated or not.
The dashed edges represent edges of the variable gadgets. Edges labeled by a
number ` belong to the graph G′`.

connections such that no edge with label 3 shares vertices with more than one
antenna. The connections are illustrated by dashed lines in Figures 1 and 2. We
set G1 := G′1 ∪G′3 and G2 := G′2 and output the Common Independent Set
instance (G1, G2, k), where k := m+

∑n
i=1mi.

It remains to show that the construction is correct and that G1 and G2

satisfy the required properties. Indeed, G1 consists of pairwise disjoint paths of
lengths at most two, since it only contains the edges labeled 1 or 3, of which each
family forms a matching, and no edge with label 3 is ever connected to two edges
labeled 1 and vice versa (only antennas are labeled 1). Moreover, G2 consists of
k isolated triangles and edges (labeled 2): it contains one isolated triangle for
each of the m clauses and mi isolated edges for each variable xi. It remains to
establish the correctness of the reduction by showing that φ is satisfiable if and
only if G1 ∪G2 has an independent set of size k.

First, let I be an independent set for G1 ∪ G2 that satisfies |I| = m +∑n
i=1mi = k. Note that, for each variable xi, the variable gadget of xi is a cycle

of 2mi vertices. Clearly, I contains at most half of these vertices. Moreover,
I contains at most one triangle vertex of each of our m clause gadgets. Hence,
|I| ≤ m +

∑n
i=1mi implies that I contains a triangle vertex of each of the

m clause gadgets. Equivalently,

• for each variable gadget Xi, either all T-vertices or all F-vertices are
contained in I, and

• for each clause gadget, one of its leaf vertices is not contained in I.

Equivalently, in each clause Cj , we find at least one of the following situations:
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Figure 2: The solid edges form the gadget for a variable contained in the clauses
C1, C2, and C3 non-negated, but in C4 negated. Dashed edges belong to the
clause gadgets of the clauses C1, . . . , C4. Edges labeled by a number ` belong to
the graph G′`.

• Cj contains a positive literal xi (then Cj(xi) is an F-vertex in Xi) and
I contains all T-vertices of Xi, or

• Cj contains a negative literal x̄i (then Cj(xi) is a T-vertex in Xi) and
I contains all F-vertices of Xi.

Therefore, on the one hand, setting a variable xi to true if and only if I contains
the T-vertices of Xi yields a satisfying assignment for φ.

On the other hand, if we have a satisfying assignment for φ, putting into I all
T-vertices of Xi if xi is true and all F-vertices otherwise allows us to choose I so
that it contains a triangle vertex of each clause gadgets and, thus, so that |I| ≥ k.

We can now easily turn this reduction into a reduction that also proves Lemma 3.
To this end, note that subdividing an edge of a graph twice increases the size
of the graph’s maximum independent set by exactly one. Thus, instead of
using the clause gadget in Figure 1, we can use the gadget shown in Figure 3
and ask for an independent set of size k := 10m +

∑n
i=1mi: indeed, the

gadget in Figure 3 is obtained from the simpler one in Figure 1 by subdividing
each triangle edge twice and each antenna four times. Thus, we increase the
maximum independent set size by 3 + 3 · 2 = 9 per clause gadget and, hence,
ask for k := 10m+

∑n
i=1mi instead of m+

∑n
i=1mi.

The benefit of replacing the gadget in Figure 1 by the gadget in Figure 3
is that G2 now consists only of isolated edges and vertices instead of triangles.
Moreover, the resulting graph G1 ∪ G2 = G′1 ∪ G′2 ∪ G′3 has chromatic index
three, where the edge labels yield a proper edge coloring. Thus, using Figure 3,
we proved Lemma 3.

Using Lemma 3, it is now easy to prove Theorem 1.
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Figure 3: Advanced gadget for a clause Cj containing the variables x1, x2,
and x3. With each variable xi, we associate a leaf vertex Cj(xi), which is
merged with either a T- or an F-vertex in the gadget for variable xi (Figure 2),
depending on whether Cj contains the variable xi negated or not. The dashed
edges represent edges of the variable gadgets. Edges labeled by a number `
belong to the graph G′`.

Proof of Theorem 1. Statement (i) immediately follows from Lemma 1. It re-
mains to show (ii). To this end, observe that, without loss of generality, C1
contains not only cluster graphs. Therefore, it contains a graph that has a P3

as induced subgraph. Since C1 is closed under induced subgraphs and disjoint
unions, it follows that C1 contains all graphs that consist of pairwise disjoint
paths of length at most two. With the same argument and exploiting that
C2 contains at least one graph with an edge, we obtain that C2 contains all
graphs consisting of isolated vertices and edges. Hence, NP-hardness follows
from Lemma 3.

Concluding this section, we derive further hardness results for Job Interval
Selection from Lemma 2.

Corollary 3. Even when restricted to instances

• with an input graph that consists of disjoint paths of length at most two

• and that ask for a colorful independent set of size k with k being equal to
the number γ of input colors,

Job Interval Selection remains

i) NP-hard, and
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ii) cannot be solved in 2o(k) ·nO(1) time unless the Exponential Time Hypothesis
fails.1

Herein, (i) simply translates into our colored model the statement of Lemma 2
that Common Independent Set remains NP-hard even if one input graph is a
cluster graph with k connected components. Moreover, (ii) follows by combining
a result of Impagliazzo et al. (2001) with the fact that k is proportional to the
number of clauses in the input 3-SAT formula (Lemma 2).

6 Job Interval Selection

In this section, we investigate the parameterized complexity of Job Interval
Selection. As warm-up for working with the colored model, Section 6.1 first
gives a simple search tree algorithm that solves Job Interval Selection in
linear time if the sought solution size k and the maximum number Γ of colors in
any maximal clique of G are constant.

Section 6.2 then proceeds with a reformulation of the fixed-parameter algo-
rithm of Halldórsson and Karlsson (2006) with respect to a structural parameter
into our colored model, which makes it easy for us to generalize the algorithm to
2-Union Independent Set and also to show that the problem is linear-time
solvable if only k is constant (as opposed to requiring both k and Γ being con-
stant). However, the space requirements as well as the running time exponentially
depend on k.

We conclude our findings for Job Interval Selection in Section 6.3 by
showing that the problem has no polynomial-size problem kernel in general, but
on proper interval graphs.

6.1 A Simple Search Tree Algorithm

As a warm-up for working with the colored formulation of Job Interval
Selection, this section presents a simple search tree algorithm leading to the
following theorem:

Theorem 2. Job Interval Selection is solvable in O(Γk · n) time, where Γ
is the maximum number of colors occurring in any maximal clique.

Only for Γ < 6 the worst-case running time of Theorem 2 can compete with our
generalizations of the dynamic program of Halldórsson and Karlsson (2006) in
Section 6.2 (Theorem 4). However, as opposed to the dynamic programs presented
in Section 6.2, the space requirements of the search tree algorithm are polynomial.

The first ingredient in our search tree algorithm is the following lemma, which
shows that a search tree algorithm only has to consider the “first” intervals of
the interval graph for inclusion into an optimal solution. This is illustrated in
Figure 4.

1The Exponential Time Hypothesis basically states that there is no 2o(n)-time algorithm
for n-variable 3-SAT (Impagliazzo et al., 2001; Lokshtanov et al., 2011).
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Figure 4: The set K of intervals that start no later than any interval in G ends
are drawn black. The other intervals are drawn gray.

Lemma 4. Let K be the set of intervals that start no later than any interval
in G ends. Then, there is a maximum colorful independent set that contains
exactly one vertex of K.

Proof. Let I be a maximum colorful independent set for G with I ∩ K = ∅
and let v∗ be the interval in G that ends first. Obviously, v∗ ∈ K and any
interval v ∈ I intersecting v∗ is in K. Hence, since I ∩ K = ∅, I contains
no interval intersecting v∗. It follows that I contains a vertex w such that
col(w) = col(v∗), otherwise I ∪ {v∗} would be a larger colorful independent set.
Now, I ′ = (I \ {w}) ∪ {v∗} is a colorful independent set for G with |I ′| = |I|
and v∗ ∈ I ′ ∩K.

Finally, note that I cannot contain more than one vertex of K since the
intervals in K pairwise intersect.

The second ingredient in our search tree algorithm is the following lemma, which
shows that knowing the color of the interval in K that is to be included in
an optimal solution is sufficient to choose an optimal interval from K into a
maximum colorful independent set.

Lemma 5. Let K be the set of intervals that start no later than any interval
in G ends. Moreover, assume that there is a maximum colorful independent set
containing an interval of color c from K.

Then, there is a maximum colorful independent set that contains the interval
of color c from K that ends first.

Proof. Let I be a maximum colorful independent set, let v ∈ K ∩ I and
let col(v) = c. Moreover, let v∗ be the interval in K with col(v∗) = c that
ends first. By Lemma 4, I contains at most one interval of K. Then, since v
intersects all intervals that intersect v∗, we know that I ′ = (I \ {v}) ∪ {v∗} is a
colorful independent set with |I ′| = |I|.

Using Lemma 4 and Lemma 5, it is easy to prove Theorem 2.

Proof of Theorem 2. The algorithm works as follows. First, find the set K of
intervals that start no later than any interval in G ends. Let C :=

⋃
v∈K col(v) be

the set of colors occurring in K. Note that these computations can be executed
in O(n) time. Since the intervals in K form a maximal clique, it follows that
|C| ≤ Γ. By Lemma 4 and Lemma 5, it is now sufficient, for each color c ∈ C
and the first-ending interval v with col(v) = c, to try choosing v for inclusion
into the solution and to try recursively finding a colorful independent set of
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size k−1 in the interval graph G without vertices having color c or intersecting v
(that is, starting after v ends).

The recursion depth is bounded by k, each recursion step causes at most
Γ new recursion steps, and each recursion step requires O(n) time, yielding a
total running time of O(Γk · n).

6.2 Generalizations of Halldórsson and Karlsson (2006)’s
Dynamic Program

In this section, we first present the dynamic program for Job Interval Se-
lection by Halldórsson and Karlsson (2006) in terms of our colored model.
Based on this presentation, we show modifications in order to lower its space
requirements, we generalize it to Colorful Independent Set with Lists
and, finally, transform it into a fixed-parameter algorithm with respect to the
parameter k.

It is easy to see that the dynamic programs in this section can be straightfor-
wardly generalized to the problem variant where each interval has assigned a
weight and we search for a colorful independent set of maximum weight, rather
than of maximum size.

Dynamic Program for Parameter “Number γ of Colors”. Let (G, k) be
an instance of Job Interval Selection, where G is given in c-compact
representation for minimum c. For i ∈ [c + 1] and C ⊆ [γ], we use T [i, C] to
denote the size of a maximum colorful independent set in G that uses only
intervals whose start point is at least i and whose color is in C. Obviously,
for i = c + 1 and any C ⊆ [γ], we have T [i, C] = 0. Knowing T [i, C] for some
i ∈ [c + 1] and all C ⊆ [γ], we can easily compute T [i − 1, C] for all C ⊆ [γ],
since there are only two cases:

1. There is a maximum independent set of intervals with start point at
least i− 1 and colors belonging to C that contains an interval v with vs = i− 1.
Then, T [i− 1, C] = 1 + T [ve + 1, C \ {col(v)}].

2. Otherwise, T [i− 1, C] = T [i, C].

It follows that we can compute the size T [1, [γ]] of a maximum colorful indepen-
dent set in G using the recurrence

T [i− 1, C] (DP-γ)

= max


T [i, C],

1 + max
v∈V,vs=i−1
col(v)∈C

T [ve + 1, C \ {col(v)}].

In this way, we obtain an alternative formulation of the dynamic program of
Halldórsson and Karlsson (2006) using colored interval graphs instead of a
geometric formulation. We can evaluate recurrence (DP-γ) in O(2γn) time by
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iterating over the intervals in G in order of decreasing start points and, for each
interval, iterating over all subsets of [γ]. In this way, we first handle all intervals
with start point c, then with c−1 and so on, so that we compute the table entries
for decreasing start points i ∈ [c+ 1]. Herein, the c-compact representation not
only ensures that the intervals are sorted by their start points, but also that, for
each i ∈ [c], some interval starts in i and, therefore, that the table entry T [i, C]
indeed gets filled for all C ⊆ [γ]. This algorithm yields an alternative proof for a
result by Halldórsson and Karlsson (2006):

Proposition 1 (Halldórsson and Karlsson (2006)). Job Interval Selection
is solvable in O(2γ · n) time.

Dynamic Program for Parameter “Maximum Number Q of Live Col-
ors”. Halldórsson and Karlsson (2006) improved recurrence (DP-γ) from using
the parameter γ to the structural parameter Q ≤ γ, which is defined as follows:

Definition 2. Let G be an interval graph given in c-compact representation
and with vertex colors in [γ]. For each i ∈ [c+ 1], let

Li ⊆ [γ] be the set of colors that appear on intervals with start point at most i
(note that Lc+1 = [γ]), and

Ri ⊆ [γ] be the set of colors that appear on intervals with start point at least i
(note that Rc+1 = ∅).

Then Q := maxi∈[c+1] |Li ∩Ri| is the maximum number of live colors. That is,
a color c is live at a point i if there is an interval with color c that starts no later
than i as well as an interval with color c that starts no earlier than i.

Using this definition, we first observe that, when searching for a maximum
colorful independent set containing only intervals with start point at least i, it is
safe to allow this independent set to contain all colors of L̄i := [γ] \ Li: this is
because an interval with start point before i cannot have a color in L̄i. Hence,
we are only interested in the values T [i, C] for i ∈ [c + 1] and L̄i ⊆ C ⊆ [γ].
Second, a colorful independent set that only contains intervals with start point
at least i only contains intervals of color Ri. Therefore, it is safe to allow only
colors contained in Ri and we see that we are only interested in the values T [i, C]
for i ∈ [n+ 1] and L̄i ⊆ C ⊆ Ri. There are at most 2Q such subsets, since for
each C with L̄i ⊆ C ⊆ Ri, we have C \ L̄i ⊆ Li ∩Ri.

Exploiting these observations in (DP-γ), we can compute T [i−1, C] for all C
with L̄i−1 ⊆ C ⊆ Ri−1 as

T [i− 1, C] (DP-Q)

= max


T [i, (C ∪ L̄i) ∩Ri],
1 + max
v∈V,vs=i−1
col(v)∈C

T [ve + 1, (C ∪ L̄ve+1) ∩ (Rve+1 \ {col(v)})].
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As we have not changed the semantics of a table entry compared to (DP-γ), the
size of a maximum colorful independent set in G is, as before, T [1, [γ]]. Hence,
the improved dynamic program of Halldórsson and Karlsson (2006) also works
in our colored model:

Proposition 2 (Halldórsson and Karlsson (2006)). Job Interval Selection
is solvable in O(2Q · n) time, where Q is the maximum number of live colors as
defined in Definition 2.

Improving the Space Complexity. Having stated the dynamic programs
of Halldórsson and Karlsson (2006) in terms of our colored model, we now build
upon these algorithms. Obviously, the dynamic programming table of recurrence
(DP-Q) has 2Q · (c + 1) entries. We improve it to 2Q · (` + 2), where ` is the
length of the longest interval in the input interval graph. That is, if Q and `
are constant, we can solve arbitrarily large input instances using a constant-size
dynamic programming table. Note that, even if ` is not bounded by a constant,
we have ` ≤ c−1, and therefore 2Q · (`+2) ≤ 2Q · (c+1), since the input instance
is given in a c-compact representation.

The improvement of space complexity is based on a simple observation: when
computing T [i− 1, C] in (DP-Q), there is a largest possible i′ > i− 1 and some
color set C ′ for which we access T [i′, C ′]. By definition of T , i′ = ve + 1 for some
interval v with start point vs = i− 1. We have i′ − 1 = ve ≤ vs + ` = i− 1 + `,
and, hence, i′ ≤ i+ `. It follows that we only need 2Q(`+ 2) table entries, since
the entry T [i− 1, C] does not need the value T [i+ `+ 1, C] and can therefore
reuse the space previously occupied by T [i+ `+ 1, C]. This we simply achieve
by storing T [i, C] for i ∈ [c+ 1] and C ⊆ [γ] in a table T ′[i mod (`+ 2), C] that
has only ` + 2 entries in the first coordinate. Having shrunken the dynamic
programming table in this way, we obtain the following lemma:

Proposition 3. Job Interval Selection is solvable in O(2Q · n) time and
O(2Q`+ γc) space when the input graph is given in c-compact representation, `
is the maximum interval length, and Q is the maximum number of live colors as
defined in Definition 2.

Herein, O(2Q`) space is used by the dynamic programming table and O(γc) space
is used to hold the sets Li and Ri from Definition 2, which we used to speed up
the dynamic programming.

Generalization to Colorful Independent Set with Lists. We now gener-
alize (DP-Q) to Colorful Independent Set with Lists. That is, vertices
are now allowed to have multiple colors instead of just one and we search for a
maximum independent set that is colorful in the sense that no pair of vertices
may have common colors. The algorithm for Colorful Independent Set
with Lists will allow us to solve 2-Union Independent Set in Section 7.1.

Due to the formulation of (DP-Q) in our colored model, the generalization to
Colorful Independent Set with Lists turns out to be easy. For i ∈ [c+ 1]
and C ⊆ [γ], we use T [i, C] to denote the size of a maximum colorful independent
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set in G that uses only intervals with start point at least i and whose colors are
a subset of C.

Completely analogously to Job Interval Selection, we can compute the
size T [1, [γ]] of a maximum colorful independent set by computing T [i− 1, C]
for each i ∈ [c+ 1] and all color sets C with L̄i−1 ⊆ C ⊆ Ri−1 as

T [i− 1, C] (DP-Q*)

= max


T [i, (C ∪ L̄i) ∩Ri],
1 + max
v∈V,vs=i−1
col(v)⊆C

T [ve + 1, (C ∪ L̄ve+1) ∩ (Rve+1 \ col(v))].

The improvement of the space complexity demonstrated for Job Interval
Selection also works here. Hence, we can merge Propositions 1–3 into the
following theorem:

Theorem 3. Given an interval graph with γ colors and maximum interval
length ` in c-compact interval representation, Colorful Independent Set
with Lists is solvable in O(2Q · n) time and O(2Q`+ γc) space, where Q is the
maximum number of live colors as defined in Definition 2.

Algorithm for Parameter “Solution Size k”. We now improve recurrence
(DP-γ) to a fixed-parameter algorithm for Job Interval Selection with
respect to the parameter k ≤ γ. Our first step is providing a randomized fixed-
parameter algorithm for Job Interval Selection. The algorithm correctly
answers if a no-instance of Job Interval Selection is given. In contrast,
it rejects “yes”-instances with a given error probability ε. The randomized
algorithm can be derandomized to show the following theorem:

Theorem 4. Job Interval Selection can be solved with error probability ε
in O(5.5k · | ln ε| ·n) time and O(2k · `) space. The algorithm can be derandomized
to deterministically solve Job Interval Selection in O(12.8k · γn) time.

Comparing this theorem with the hardness result in Corollary 3 from Section 5,
the running time of the derandomized algorithm is optimal up to factors in the
base. However, in practical applications, the randomized algorithm is probably
preferable over the derandomized one, since the error probability can be chosen
very low without increasing the running time significantly.

To prove Theorem 4, we use the color-coding technique by Alon et al. (1995)
to reduce the number γ of colors in the given instance to k. After that, recurrence
(DP-γ) can be evaluated in O(2k · n) time. Depending on whether we reduce
the number of colors randomly or deterministically, this method will yield the
first or the second running time.

Proof of Theorem 4. Let (G, col, k) be an instance of Job Interval Selection.
In a first step, we assign each color in [γ] a color in [k] uniformly at random.
Let δ : [γ]→ [k] denote this recoloring and let (G, col′, k) denote the resulting
instance with col′(v) = δ(col(v)) for all vertices v. Note that, in general, δ is not
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injective. Then, we use (DP-γ) to compute a size-k colorful independent set in
the resulting instance. Since the resulting instance has only k colors, this works
in O(2k · n) time.

We now first analyze the probability that a colorful independent set
for (G, col, k) is also a colorful independent set for (G, col′, k) and vice versa.
Then, we analyze how often we have to repeat the procedure of recoloring and
computing recurrence (DP-γ) in order to achieve the low error probability ε.

First, assume that the recolored instance (G, col′, k) is a “yes”-instance.
Then, there is a colorful independent set I with |I| ≥ k. The set I is a colorful
independent set also for the original instance (G, col, k), since each color in col is
mapped to only one color in col′. It follows that (G, col, k) is a “yes”-instance.

Now, assume that the original instance (G, col, k) is a “yes”-instance. We
analyze the probability of the recolored instance (G, col′, k) being a “yes”-
instance. Let I be a colorful independent set for (G, col, k). The set I is a
colorful independent set for (G, col′, k) if the vertices in I have pairwise distinct
colors with respect to col′. Since the vertices in I have pairwise distinct colors
with respect to col and we assign each color in [γ] a color in [k] uniformly
at random, the colors of the vertices of I with respect to col′ are also chosen
uniformly at random and independently from each other. Thus, the probability
of I being colorful with respect to col′ is p := k!/kk: out of kk possible ways
of coloring the k vertices in I with k colors, there are k! ways of doing so in a
colorful manner. Hence, the probability of (G, col′, k) also being a “yes”-instance,
is p := k!/kk.

In order to lower the error probability of not finding a colorful independent set
if it exists to ε, we repeat the process of recoloring and running recurrence (DP-γ)
t(ε) times. That is, we want

(1− p)t(ε) ≤ ε.

Exploiting that 1 + x ≤ ex holds for all x ∈ R, the above inequality is satisfied
by any number t(ε) of recoloring trials that satisfies

e−p·t(ε) ≤ ε.

Taking the logarithm on both sides and rearranging terms,

t(ε) ≥ ln ε · 1

−p
= | ln ε| · k

k

k!
.

Using Stirling’s lower bound for the factorial, one obtains kk/k! ∈ O(ek). To
conclude the proof, it is now enough to put together the observations that each
run of recurrence (DP-γ) with k colors takes O(2k · n) time and that we have to
repeat it only t(ε) ∈ O(| ln ε| · ek) times to get an error probability of ε. Thus,
the overall procedure takes O(| ln ε| · (2e)k · n) time.

We now derandomize the presented algorithm: instead of repeatedly choosing
random recolorings δ : [γ]→ [k], we deterministically enumerate the recolorings
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according to a k-color coding scheme (Chen et al., 2007): a k-color coding
scheme F is a set of recolorings such that, for each subset C ⊆ [γ] with |C| = k,
there is a recoloring δ ∈ F such that the colors in C will be mapped to pairwise
distinct colors by δ. That is, whatever colors a colorful independent set I of
size k in G might have, there is one recoloring in F such that I is colorful after
recoloring. Thus, the dynamic program (DP-γ) will find it.

A k-color coding scheme F can be computed in O(6.4k · γ) time (Chen et al.,
2007). Moreover, it consists of O(6.4k ·γ) colorings. That is, in O(6.4kγ·2kn) time,
we can run (DP-γ) for each coloring in F , thus proving (ii).

Many algorithms that are based on the color-coding techniques can be sped up
using algebraic techniques (Koutis and Williams, 2009). It would be interesting
to see whether they can also be used to speed up the running time of Theorem 4
(at least in the asymptotic sense).

Finally, note that the color-coding technique as used in Theorem 4 for Job
Interval Selection could be applied to Colorful Independent Set with
Lists in the same way. However, the result will not be a fixed-parameter
algorithm with respect to the parameter “solution size k”, but with respect to
the total number of colors found in the lists of the solution vertices. This number
could potentially be much larger than k and even n, thus making such a fixed-
parameter algorithm not particularly attractive for Colorful Independent
Set with Lists.

6.3 Polynomial-Time Preprocessing

In this section, we first show that efficient and effective data reduction in form
of polynomial-size problem kernels is most likely unfeasible for Job Interval
Selection. Then, we show that it becomes feasible when we restrict the colored
input graph to be a proper interval graph.

Non-Existence of Polynomial-Sized Problem Kernels. We show that
Job Interval Selection is unlikely to admit problem kernels of polynomial
size with respect to various parameters. To this end, we employ the “cross com-
position” technique introduced by Bodlaender et al. (2014). A cross composition
is a polynomial-time algorithm that, given t instances xi with 0 ≤ i < t of an
NP-hard starting problem A, outputs an instance (y, k) of a parameterized prob-
lem B such that k ∈ poly(max0≤i<t |xi|+ log t) and (y, k) is a “yes”-instance for
B if and only if there is some 0 ≤ i < t with xi being a “yes”-instance for A. A
theorem by Bodlaender et al. (2014) now states that if a problem B admits such
a cross composition, then there is no polynomial-size problem kernel for B unless
the polynomial hierarchy collapses to the third level, which is widely disbelieved.

In the following, we present a cross composition for Job Interval Selection
parameterized by the combination of the size ω of a maximum clique and the
number γ of colors, yielding the following theorem:
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x0 x1 x2 . . . xt−2 xt−1

log t

Figure 5: Schematic view of the cross composition for Job Interval Selection.
Circles at the bottom represent the t input instances. Bars at the top represent
the auxiliary intervals spanning over the input instances. Here, each of the log t
rows stands for a new color. A solution (black intervals) for the instance must
select one interval in each row, thereby selecting one of the t input instances (x2
in this example).

Theorem 5. Unless the polynomial hierarchy collapses, Job Interval Se-
lection does not admit a polynomial-size problem kernel with respect to the
combined parameter “number γ of colors” and “maximum clique size ω”.

In particular, there are no polynomial-size problem kernels for the combined
parameters (ω, k) or (ω,Q), where Q is the number of “live colors” (Definition 2).

The second part of the theorem follows from the first part since both k and Q
are at most γ.

Proof. We present a cross composition from the NP-hard starting problem Job
Interval Selection with the further restriction that the sought solution size k
equals the number of colors γ. We saw in Corollary 3 in Section 5 that this
restriction remains NP-hard. The framework of Bodlaender et al. (2014) allows
us to force all of the t input instances xi to have the same value for k and, thus,
each instance uses the same color set [k]. We assume, without loss of generality,
that t is a power of two (otherwise, we add some “no”-instances to the list of
input instances). The steps of the cross composition are as follows (see Figure 5):

1. Place the start and end points of the n intervals of each input instance xi
into the integer range [i · n, (i+ 1) · n− 1].

2. Introduce log t extra colors k+1, k+2, . . . , k+log t; the resulting instance
then asks for an independent set of size k + log t.

3. For each 1 ≤ i ≤ log t, introduce 2i auxiliary intervals v0, v1, . . . , v2i−1
with color k + i such that the auxiliary interval vj spans exactly over the
instances x` with

j · t
2i
≤ ` ≤ (j + 1) · t

2i
− 1.

To show that this construction is indeed a cross composition for the parameters
“number γ of colors” and “maximum clique size ω”, observe that γ, ω ≤ maxi |xi|+
log t and it remains to prove that the constructed instance (G, k + log t) is a
“yes”-instance if and only if one of the input instances is a “yes”-instance.
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First, if the constructed graph G has a colorful independent set I of size k +
log t, then I contains an interval of each color. In particular, I contains an
auxiliary interval of each of the colors k + 1 to k + log t. We show that all of
the k non-auxiliary intervals of I are from the same input instance. To this end,
note that, for each 1 ≤ i ≤ log t, each auxiliary interval vj of color k + i spans
over exactly

(j + 1) · t
2i
− j · t

2i
=

t

2i
instances.

Since instances spanned by auxiliary intervals of I are disjoint, the log t auxiliary
intervals in I span exactly

log t∑
i=1

t

2i
= t− 1 instances.

Hence, exactly one input instance is not spanned, implying that all non-auxiliary
intervals in I are from this very instance.

Second, let x` be a “yes”-instance, that is, there is an independent set of
size k in x` that contains the colors [k]. We extend this to a colorful independent
set of size k + log t for G. To this end, it is sufficient to add the intervals from a
(log t)-separating colorful independent set, where a colorful independent set I is
i-separating for some integer i if

• no interval in I spans x`,

• I has size i and contains all colors {k + 1, . . . , k + i}, and

• there is a single interval of color k + i that is not in I and covers all
instances not spanned by the intervals in I.

Obviously, there is a 1-separating colorful independent set, since the intervals
with color k + 1 separate the input instances in exactly two halves. To complete
the proof, it remains to extend this 1-separating independent set to be (log t)-
separating. To this end, we use induction.

Assume that I is an i-separating colorful independent set for some 1 ≤ i <
log t. We show how to extend it to be (i+ 1)-separating. The auxiliary intervals
in I span exactly

i∑
j=1

t

2j
= t− t

2i
instances.

That is, t/2i instances are not spanned by I but by a single interval of color k+ i.
Since each interval with color k + i+ 1 spans t/2i+1 instances and is contained
in an interval of color k + i, there are precisely two intervals of color k + i+ 1
that span the instances not spanned by I. Since they are disjoint, one of them
does not span x`, add this interval to I.
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Polynomial-Size Problem Kernel on Proper Interval Graphs. We re-
strict Job Interval Selection to proper interval graphs, which remains
NP-hard, as shown in Section 5. Here, the negative result of Theorem 5 collapses:
the following polynomial-time data reduction routine produces a problem kernel
containing 4k2 ·ω intervals, where ω is the maximum clique size in the input graph.

Reduction Rule 1. For a graph G and a color c, let G[c] denote the subgraph
of G induced by the intervals of color c.

If G[c] has an independent set of size at least 2k − 1, then remove all intervals
of color c and decrease k by one.

In order to show that a reduction rule is correct, one has to show that the output
instance is a “yes”-instance if and only if the input instance is.

Lemma 6. Reduction Rule 1 is correct and can be applied exhaustively in
O(n) time.

Proof. Let (G′, k−1) denote the instance produced by Reduction Rule 1 from an
instance (G, k) by removing all intervals of a color c from G. Clearly, a colorful
independent set I for G is also a colorful independent set for G′ if we remove
the interval with color c from I. Hence, if (G, k) is a “yes”-instance, then so
is (G′, k − 1).

In the following, let (G′, k− 1) be a “yes”-instance with solution I and let Ic
denote an independent set of size 2k − 1 in G[c]. If |I| ≥ k, then (G, k) is a
“yes”-instance. Otherwise, |I| ≤ k − 1. Furthermore, I does not contain an
interval with color c. Consider an interval u ∈ I. If NG(u) ∩ Ic contains at
least three intervals x, y, z, then G[{u, x, y, z}] is a K1,3, contradicting G being
a proper interval graph. Therefore, each interval in I overlaps at most two
intervals in Ic. Hence, the intervals in I overlap at most 2|I| ≤ 2(k − 1) < |Ic|
intervals, implying that Ic \N [I] 6= ∅. Thus, there is an interval in Ic that can
be added to I, thereby obtaining a solution for (G, k).

It remains to argue the claimed running time. To this end, note that a
maximum independent set in G[c] can be computed in O(nc) time with nc :=
|V (G[c])|, since G[c] is an ordinary (that is, monochromatic) proper interval
graph. Hence, computing maximum independent sets for all colors can be done
in O(n) time in total. Since applying the rule for one color does not affect other
colors, this application is exhaustive, that is, Reduction Rule 1 is not applicable
to the resulting instance.

In order to prove the problem kernel bound, we further need the following trivial
“data reduction rule” that returns a “yes”-instance if we can greedily find an
optimal solution.

Reduction Rule 2. Let I be a maximal colorful independent set of G. If |I| ≥ k,
then return a small trivial “yes”-instance.

Lemma 7. Reduction Rule 2 is correct can be applied in O(n) time.
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Proof. The correctness of Reduction Rule 2 is obvious. It remains to prove the
running time.

A maximal colorful independent set of G can be found by greedily picking the
first-ending valid interval v into an independent set I and deleting all intervals
that overlap v. Herein, we can keep a size-γ array whose i-th entry is 1 if color i
is already used. Using this array, we can check in constant time whether an
interval is valid for inclusion in I. Moreover, since invalid vertices do not become
valid again, the whole procedure can be executed in O(n) time, given that the
intervals are sorted.

Given these two data reduction rules, we can now prove the following theorem.

Theorem 6. Job Interval Selection on proper interval graphs admits a
problem kernel with at most 4k2 · ω intervals that is computable in O(n) time.
Herein, ω is the maximum clique size of the input graph.

Proof. To show the problem kernel bound, consider an instance (G, k) of Job
Interval Selection that is reduced with respect to Reduction Rule 1 and to
which Reduction Rule 2 has been applied. It follows that there is a maximal
colorful independent set I of G with |I| < k. Since G is a proper interval graph,
the neighborhood of each vertex v can be partitioned into two cliques: one
consisting of intervals containing vs, one consisting of intervals containing ve.
Thus, each vertex in I has at most 2ω − 1 neighbors and, hence, we can
bound |N [I]| ≤ 2kω.

Now, let X := V (G) \N [I] and let G′ := G[X]. Then, since I is maximal, all
intervals in X have a color that appears in I, of which there are at most k − 1.
For each color c of these, let G′[c] denote the subgraph of G′ that is induced
by all intervals of color c in X and let Ic denote a maximum independent
set of G′[c]. Since G is reduced with respect to Reduction Rule 1, |Ic| ≤
2(k − 1). Again, since G′[c] is a proper interval graph, each interval u ∈ Ic
has at most 2ω − 1 neighbors in G′[c]. Thus, the total number of intervals
in G′[c] is at most 4(k − 1)(ω − 1). Since G′ contains at most k − 1 colors, we
can bound |V (G′)| ≤ 4(k − 1)2(ω − 1), implying a bound of |V (G)|+ |N [I]| ≤
4(k − 1)2(ω − 1) + 2kω ≤ 4k2ω for the number of intervals in G.

The running time bound follows from Lemma 6 and Lemma 7.

7 2-Union Independent Set

In Section 6, we studied the Job Interval Selection problem, which is
equivalent to 2-Union Independent Set where one of the two input interval
graphs is a cluster graph. In this section, we investigate the parameterized
complexity 2-Union Independent Set.

Corollary 1 has already shown that 2-Union Independent Set is NP-hard
even if the maximum clique size of both input interval graphs and the maximum
vertex degree are at most two. Moreover, we already know that 2-Union
Independent Set is W[1]-hard with respect to the parameter k (Jiang, 2010).
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Hence, with respect to these three parameters, 2-Union Independent Set is
unlikely to be fixed-parameter tractable.

In contrast, this section shows how the compactness of the input interval
graphs affects the computational complexity of 2-Union Independent Set.
To this end, as before, let c∀ be the minimum number such that both input
interval graphs are c∀-compact and let c∃ be the minimum number such that at
least one of both input interval graphs is c∃-compact (see Definition 1).

First, in Section 7.1, we show a fixed-parameter algorithm with respect to
the parameter c∃. The algorithm is an adaption of our algorithm for Colorful
Independent Set with Lists (Theorem 3) to 2-Union Independent Set.
In the analysis of its complexity, the parameter c∃ naturally arises as complexity
measure.

Second, in Section 7.2, we show a simple polynomial-time data reduction
rule for 2-Union Independent Set. Again, in the analysis of its effectiveness,
the parameter c∀ naturally arises as complexity measure.

Since in both applications, compactness-related parameters arose quite nat-
urally, we suspect that the parameter may be useful in the development in
fixed-parameter algorithms for other NP-hard problems on interval graphs.

7.1 A Dynamic Program for 2-Union Independent Set

We describe an algorithm that solves 2-Union Independent Set in O(2c∃ ·
n) time. To this end, we reformulate 2-Union Independent Set as a special
case of Colorful Independent Set with Lists and then solve the resulting
instance using the dynamic program (DP-Q*) from Section 6.2 (Theorem 3).

An instance of 2-Union Independent Set can be solved by an algorithm for
Colorful Independent Set with Lists as follows: without loss of generality,
assume that of the input interval graphs G2 is c∃-compact. We interpret each
number in [c∃] as a color and give the input graph G1 as input to Colorful
Independent Set with Lists such that each vertex v of G1 gets the colors
corresponding to the numbers contained in the interval that represents v in G2.
Then a solution for Colorful Independent Set with Lists is a solution for
2-Union Independent Set and vice versa:

• Two vertices v and w may be together in a solution of 2-Union Inde-
pendent Set if and only if their intervals neither intersect in G1 nor
in G2.

• Two vertices v and w may be together in a solution of Colorful In-
dependent Set with Lists if and only if neither their intervals in G1

intersect nor their color lists intersect (which are precisely their intervals
in G2).

We stated earlier that Colorful Independent Set with Lists is a more
general problem than 2-Union Independent Set. This now becomes clear:
whereas Colorful Independent Set with Lists allows arbitrary color lists,
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the instances generated from 2-Union Independent Set only use intervals of
natural numbers as color lists.

To execute the transformation from 2-Union Independent Set to Color-
ful Independent Set with Lists, we just take each interval of G2 and add
the numbers that it contains to the color list of the corresponding vertex in G1.
Since each interval in G2 contains at most c∃ numbers, the transformation from
2-Union Independent Set to Colorful Independent Set with Lists
is executable in O(c∃ · n) time. The resulting Colorful Independent Set
with Lists instance has c∃ colors and, by Theorem 3, is solvable in additionally
O(2c∃ · n) time.

Theorem 7. 2-Union Independent Set is solvable in O(2c∃ · n) time when
at least one input interval graph is c∃-compact.

7.2 Polynomial-Time Preprocessing

We provide polynomial-time data reduction for 2-Union Independent Set.
It will turn out that the presented data reduction rule yields a polynomial-size
problem kernel for the parameter c∀, where both input interval graphs G1, G2

are c∀-compact.
The intuition behind the data reduction rule is simple: assume that we have

a vertex that is represented by the interval v in the first input interval graph G1

and by v′ in the second input interval graph G2. Moreover, assume that there is
another vertex represented by the intervals u in G1 and u′ in G2. Then, if v ⊆ u
and v′ ⊆ u′, we would never choose the vertex represented by u and u′ into a
maximum independent set, as it “blocks” a superset of vertices for inclusion into
a maximum independent set compared to the vertex represented by v and v′.
Hence, we delete the intervals u and u′.

To lead this intuitive idea to a problem kernel, we introduce the concept
of the signature of a vertex, give a reduction rule that bounds the number of
vertices having a given signature, and finally bound the number of signatures in
a 2-union graph.

Definition 3. Let (G1, G2, k) denote an instance of 2-Union Independent
Set and let v be a vertex of G1 and G2. The signature sig(v) of v is a four-
dimensional vector (−vs, ve,−v′s, v′e), where vs and ve are v’s start and end
points in G1, and v′s and v′e are its start and end points in G2.

Reduction Rule 3. Let (G1, G2, k) denote an instance of 2-Union Indepen-
dent Set. For each pair of vertices u, v of G1 and G2 such that sig(v) ≤ sig(u)
(component-wise), delete u from G1 and G2.

Lemma 8. Reduction Rule 3 is correct and can be applied in O(n log2 n) time.

Proof. Let (G1, G2, k) be an instance of 2-Union Independent Set and let u, v
be vertices of G1 and G2 such that sig(v) ≤ sig(u). Observe that this implies
vs ≥ us, ve ≤ us, v′s ≥ u′s, and v′e ≤ u′e. Hence, NG1

[v] ⊆ NG1
[u] and NG2

[v] ⊆
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NG2 [u] and, therefore, NG1∪G2 [v] ⊆ NG1∪G2 [u]. Hence, instead of choosing u
into an independent set, we can always choose v. Therefore, it is safe to delete u.

Regarding the running time, Kung et al. (1975) showed that the set of maxima
of n vectors in d dimensions can be computed using O(n logd−2 n) comparisons,
directly implying the stated running time.

Theorem 8. Let (G1, G2, k) be an instance of 2-Union Independent Set
such that G1 and G2 are c∀-compact.

Then, a problem kernel with c3∀ vertices can be constructed in O(n log2 n) time.
The size reduces to 2c2∀ vertices if one of the input graphs is proper interval.

Proof. Let (G1, G2, k) be an instance of 2-Union Independent Set. We
assume that G1 and G2 have been preprocessed according to Observation 3, that
is, at each position of the interval representations ofG1 andG2, there is an interval
start point as well as an interval end point. The problem kernel (G∗1, G

∗
2, k) is

then obtained from (G1, G2, k) by applying Reduction Rule 3 to (G1, G2, k). By
definition of G∗1 and G∗2, the graphs G∗1 and G∗2 contain at most one vertex of
each signature. Hence, it is sufficient to show that there are at most c3∀ different
signatures corresponding to vertices in the new instance (G∗1, G

∗
2, k).

Consider the set Si,j of all signatures s = (−vs, ve,−v′s, v′e) with vs = i and
v′s = j such that v remains in G∗1 and G∗2. If |Si,j | > c∀, then we find s1, s2 ∈ Si,j
such that s1 and s2 agree in the second or fourth coordinate, since there are
at most c∀ possible values for each of them. Since then s1 and s2 agree in
three coordinates, it follows that either s1 ≤ s2 or s2 ≤ s1, contradicting the
assumption that Reduction Rule 3 has been applied to (G∗1, G

∗
2, k). Obviously,

there are at most c2∀ sets of signatures Si,j and, thus, there are at most c3∀
signatures in total.

In the following, we show that the described instance has at most 2c2∀ vertices
if G1 is a proper interval graph. To this end, we will use two relations R1, R2

between pairs (i, j) ∈ [c∀]× [c∀] and signatures corresponding to vertices of G∗1.
We then show that each signature is the image under one of R1 and R2 and that
both relations are in fact functions, that is, they map each pair to at most one
signature. This proves that there are at most 2 · |[c∀] × [c∀]| = 2c2∀ signatures
corresponding to vertices in G∗1. Since G∗1 contains at most one vertex per
signature, the theorem will follow.

We define the relations R1 and R2 as follows: for a pair (i, j), the relation R1

associates (i, j) with all signatures s = sig(v) = (−vs, ve,−v′s, v′e) of Si,j that min-
imize v′e. For all signatures s = sig(w) = (−ws, we,−w′s, w′e) with w remaining
in G∗1 and that are not images under R1, the relation R2 associates (we, w

′
s) with s.

By definition, every signature is the image of some pair under either R1 or R2.
Observe that R1 is a function: since G∗1 and G∗2 are reduced with respect

to Reduction Rule 3, for each pair (i, j) ∈ [c∀] × [c∀], there is at most one
signature s = (−vs, ve,−v′s, v′e) ∈ Si,j that minimizes v′e.

It remains to show that R2 is also a function. Towards a contradiction,
assume that R2 maps some pair to two signatures. Then, there are distinct
vertices v and w in G∗1 with signatures s1 := sig(v) = (−vs, ve,−v′s, v′e) and
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Figure 6: The constellation us = xe < vs and ve < ys = ue that induces a K1,3

in G1.

s2 := sig(w) = (−ws, we,−w′s, w′e) such that (ve, v
′
s) = (we, w

′
s). Since the

vertices v and w are in G∗1, we know that vs 6= ws, since otherwise s1 ≤ s2 or
s2 ≤ s1. By symmetry, let ws < vs. Since s2 ∈ Sws,w′

s
, and, therefore, Sws,w′

s
is

nonempty, there is a signature s3 := R1(ws, w
′
s) = sig(u) = (−us, ue,−u′s, u′e).

Since s2 is an image under R2, it is not an image under R1 and, thus, we have
s2 6= s3. The definition of R1 implies us = ws, u

′
s = w′s, and u′e ≤ w′e. Therefore,

we have ue > we since, otherwise, s3 ≤ s2.
Since us = ws < vs and ve = we < ue, we now have a constellation us <

vs ≤ ve < ue of intervals that contradicts G1 being a proper interval graph:
since G1 has been preprocessed according to Observation 3, the start point us
is also the end point xe of some interval x and the end point ue is also the start
point ys of some interval y. Note that xe = us < vs ≤ ve < ue = ys implies that
x, y, v, and u are pairwise distinct. This, as depicted in Figure 6, implies that
G1 contains a K1,3 as induced subgraph, which contradicts G1 being a proper
interval graph. The K1,3 consists of the central vertex u and the leaves v, x, y.

We can generalize Theorem 8 for the problem of finding an independent set of
weight at least k: we only have to keep that vertex for each signature in the
graph that has the highest weight. Since there are at most c4∀ different signatures,
we obtain a problem kernel with c4∀ vertices for the weighted variant of 2-Union
Independent Set.

8 Experimental Evaluation

In this section, we aim for giving a proof of concept by demonstrating to which
extent instances of Colorful Independent Set with Lists are solvable
within an acceptable time frame of five minutes. Herein, we chose Colorful
Independent Set with Lists (see Section 4.2 for the definition) since it is
the most general problem studied in our work and algorithms for it also solve
2-Union Independent Set and Job Interval Selection.

We implemented the dynamic programming algorithm (DP-Q*) from Sec-
tion 6.2 that solves Colorful Independent Set with Lists in O(2Q ·n) time
and O(2Q`+γc) space (Theorem 3), where γ is the number of colors, c is the com-
pactness of the input interval graph, ` is the maximum length of an interval, and
Q is the structural parameter “maximum number of live colors” (Definition 2).
We applied the implemented algorithm to randomly generated instances.
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Note that we abstained from implementing our data reduction rules (Section
6.3 and 7.2), since they do not apply to the most general form of Colorful
Independent Set with Lists, which we aim to experiment with.

Implementation Details. The implementation of the algorithm is based on
recurrence (DP-Q*) from Section 6.2, but allows the vertices to have weights
and finds a colorful independent set of maximum weight. The source code uses
about 700 lines of C++ and is freely available.2 The experiments were run
on a computer with a 3.6 GHz Intel Xeon processor and 64 GiB RAM under
Linux 3.2.0, where the source code has been compiled using the GNU C++
compiler in version 4.7.2 and using the highest optimization level (-O3).

Data. In order to test the influence of various parameters on the running
time and memory usage of the algorithm, we evaluated the algorithm on
artificial, randomly generated data. To generate random interval graphs, we
use a model that is strongly inspired by Scheinerman (1988). However, while
Scheinerman (1988) chooses integer interval endpoints uniformly at random
without repetitions from [2n], we choose integer interval endpoints uniformly
at random from [c], where c is a maximum compactness chosen in advance. It
then remains to assign colors and weights to the vertices.

In detail, to generate a random interval graph, we fix a maximum compact-
ness c, a maximum number γ of colors, and a number n of intervals to generate.
We then randomly generate n intervals: for each interval v, we choose a start
point vs and an end point ve uniformly at random from [c]. Then, we add each
color in [γ] to the color list of v with probability 1/2 and uniformly at random
assign v a weight from 1 to 10.

To interpret the experimental results, it is important to make some structural
observations about the data generated by this random process.

1. The maximum interval length ` is at most c − 1. Moreover, with a
growing number n of generated intervals, the probability (1 − 1/c2)n of not
generating an interval that indeed has length c− 1 approaches zero. That is, we
expect the chosen parameter c ≈ `+ 1 to roughly linearly influence the memory
usage of the algorithm (Theorem 3).

2. The maximum number of live colors Q is at most the number γ of colors.
However, since every interval contains each color with equal probability, with in-
creasing number n of intervals we will haveQ ≈ γ. Hence, we expect γ to exponen-
tially influence the running time and memory usage of the algorithm (Theorem 3).

3. The sizes of the generated vertex color lists follow a binomial distribution.
The expected color list size is γ/2.

2http://fpt.akt.tu-berlin.de/cis/
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Figure 7: Dependence of running time and space requirements of the dynamic
program (DP-Q*, Section 6.2) for Colorful Independent Set with Lists
on the number γ of colors in the input interval graph, each having 105 intervals
and being 103-compact.

Experimental Results. We generated three data sets by varying each time
one of the parameters {n, γ, c} and keeping the other two constant. We applied
our algorithm to find a maximum colorful independent set in each of the graphs.

For the first data set, we let the number γ of colors vary between 10 and
18 and fixed n = 105 and c = 103. Figure 7 clearly exhibits the exponential
dependence of running time and memory usage on the number γ of colors, which
both roughly double when increasing the number of colors by one. We see that,
in this setup, we can solve Colorful Independent Set with Lists within a
time frame of five minutes for γ ≤ 17.

For the second data set, we let the number n of intervals vary between 105

and 6 · 105. We again fixed c = 103. We chose γ = 15 as number of colors. As
expected, Figure 8 shows a roughly linear dependence of the running time on the
number n of intervals. Moreover, the memory usage is almost constantly about
250 MB with a slight increase, since we left the compactness c constant and with
increasing number n of intervals, the maximum interval length ` approaches the
maximum compactness c.

For the third data set, we finally let the compactness c vary between 102 and
103. We again fixed γ = 15 and n = 105. Figure 9 shows the linear dependence
of the memory usage on the compactness c ≈ ` + 1. In contrast, the running
time remains roughly constant with increasing c. The observed local minima
of the running time are exactly at those values of c where c is a power of two.
In this case, we observed that the time spent per table look-up decreases. We
suspect that this has technical reasons.

Summary. The running time and memory usage of the algorithm on randomly
generated data very reliably behave as predicted by Theorem 3 and most likely
scale to larger data. We have seen that on moderate values of γ ≤ 15, the
algorithm can solve instances with up to 5.5 · 105 intervals in a time frame of
about five minutes. However, in application data, like for example from the steel
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Figure 8: Dependence of running time and space requirements of the dynamic
program (DP-Q*, Section 6.2) for Colorful Independent Set with Lists
on the number n of intervals in the input interval graph, each being colored with
subsets of {1, . . . , 15} and being 103-compact.
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Figure 9: Dependence of running time and space requirements of the dynamic
program (DP-Q*, Section 6.2) for Colorful Independent Set with Lists
on the compactness c of the input interval graph, each having 105 intervals
colored using subsets of {1, . . . , 15}.

35



manufacturing application of Höhn et al. (2011), the number of colors can be
much higher. To efficiently solve such instances with our algorithm, it is crucial
that these instances have a low maximum number Q of “live colors”, that is, these
instances must be more structured than our randomly generated interval graphs.

9 Conclusion

We charted the complexity landscape of Independent Set on subclasses of
2-union graphs, which are of relevance for applications in scheduling, and which
generalize interval graphs. Our focus was on determining the complexity of
finding exact solutions, whereas, so far, approximation algorithms have been
much better researched in the literature (Bafna et al., 1996; Spieksma, 1999;
Bar-Yehuda et al., 2006; Chuzhoy et al., 2006).

Besides hardness results from our complexity dichotomy, we provided first
results on effective polynomial-time preprocessing (kernelization) in this con-
text. We also developed encouraging algorithmic results and evaluated them
experimentally, which might find use in practical applications.

For future work, it would be interesting to determine whether 2-Union Inde-
pendent Set is fixed-parameter tractable with respect to the “M -compositeness”
parameter that is small in the steel manufacturing application considered by
Höhn et al. (2011). Moreover, it seems worthwhile trying to speed up our
randomized algorithm for Job Interval Selection (Theorem 4) using the
algebraic techniques described by Koutis and Williams (2009).
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