Skip to main content

Parareal Schwarz Waveform Relaxation Methods

  • Conference paper
  • First Online:
Domain Decomposition Methods in Science and Engineering XX

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 91))

Abstract

Solving an evolution problem in parallel is naturally undertaken by trying to parallelize the algorithm in space, and then still follow a time stepping method from the initial time t = 0 to the final time t = T. This is especially easy to do when an explicit time stepping method is used, because in that case the time step for each component is only based on past, known data, and the time stepping can be performed in an embarrassingly parallel way.

This work was in part supported by the International Science and Technology Cooperation Program of China under grant 2010DFA14700.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Daniel Bennequin, Martin J. Gander, and Laurence Halpern. A homographic best approximation problem with application to optimized Schwarz waveform relaxation. Math. of Comp., 78(265):185–232, 2009.

    Google Scholar 

  2. Philippe Chartier and Bernard Philippe. A parallel shooting technique for solving dissipative ODEs. Computing, 51:209–236, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  3. Ashish Deshpande, Sachit Malhotra, Craig C. Douglas, and Martin H. Schultz. A rigorous analysis of time domain parallelism. Parallel Algorithms and Applications, 6:53–62, 1995.

    Article  MATH  Google Scholar 

  4. Martin J. Gander and Ernst Hairer. Nonlinear convergence analysis for the parareal algorithm. In U. Langer, M. Discacciati, D.E. Keyes, O.B. Widlund, and W. Zulehner, editors, Domain Decomposition Methods in Science and Engineering XVII, volume 60, pages 45–56. Springer-Verlag, 2007.

    Google Scholar 

  5. Martin J. Gander and Laurence Halpern. Optimized Schwarz waveform relaxation methods for advection reaction diffusion problems. SIAM J. Numer. Anal., 45(2):666–697, 2007.

    Google Scholar 

  6. Martin J. Gander, Laurence Halpern, and Frédéric Nataf. Optimal Schwarz waveform relaxation for the one dimensional wave equation. SIAM J. Numer. Anal., 41(5):1643–1681, 2003.

    Google Scholar 

  7. Martin J. Gander, Yao-Lin Jiang, Rong-Jian Li, and Bo Song. A family of parareal Schwarz waveform relaxation algorithms. In preparation, 2012.

    Google Scholar 

  8. Martin J. Gander and Andrew M. Stuart. Space-time continuous analysis of waveform relaxation for the heat equation. SIAM J. Sci. Comput., 19(6):2014–2031, 1998.

    Google Scholar 

  9. Martin J. Gander and Stefan Vandewalle. Analysis of the parareal time-parallel time-integration method. SIAM J. Sci. Comput., 29(2):556–578, 2007.

    Google Scholar 

  10. Martin J. Gander and Hongkai Zhao. Overlapping Schwarz waveform relaxation for the heat equation in n-dimensions. BIT, 42(4):779–795, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  11. Wolfgang Hackbusch. Parabolic multi-grid methods. In Roland Glowinski and Jacques-Louis Lions, editors, Computing Methods in Applied Sciences and Engineering, VI, pages 189–197. North-Holland, 1984.

    Google Scholar 

  12. Yao-Lin Jiang. A general approach to waveform relaxation solutions of differential-algebraic equations: the continuous-time and discrete-time cases. IEEE Trans. Circuits and Systems - Part I, 51(9):1770–1780, 2004.

    Google Scholar 

  13. Yao-Lin Jiang. Waveform Relaxation Methods. Scientific Press, Beijing, 2010.

    MATH  Google Scholar 

  14. Yao-Lin Jiang and Hui Zhang. Schwarz waveform relaxation methods for parabolic equations in space-frequency domain. Computers and Mathematics with Applications, 55(12):2924–2933, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  15. Ekachai Lelarasmee, Albert E. Ruehli, and Alberto L. Sangiovanni-Vincentelli. The waveform relaxation method for time-domain analysis of large scale integrated circuits. IEEE Trans. on CAD of IC and Syst., 1:131–145, 1982.

    Google Scholar 

  16. Jacques-Louis Lions, Yvon Maday, and Gabriel Turinici. A parareal in time discretization of pde’s. C.R. Acad. Sci. Paris, Serie I, 332:661–668, 2001.

    Google Scholar 

  17. C. Lubich and A. Ostermann. Multi-grid dynamic iteration for parabolic equations. BIT, 27(2):216–234, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  18. Yvon Maday and Gabriel Turinici. The parareal in time iterative solver: a further direction to parallel implementation. In U. Langer, M. Discacciati, D.E. Keyes, O.B. Widlund, and W. Zulehner, editors, Domain Decomposition Methods in Science and Engineering XVII, volume 60, pages 441–448. Springer-Verlag, 2007.

    Google Scholar 

  19. Willard L. Miranker and Werner Liniger. Parallel methods for the numerical integration of ordinary differential equations. Math. Comp., 91:303–320, 1967.

    Google Scholar 

  20. Jörg Nievergelt. Parallel methods for integrating ordinary differential equations. Comm. ACM, 7:731–733, 1964.

    Google Scholar 

  21. Stefan Vandewalle and Eric Van de Velde. Space-time concurrent multigrid waveform relaxation. Ann. Numer. Math., 1(1–4):347–363, 1994.

    Google Scholar 

  22. David E. Womble. A time-stepping algorithm for parallel computers. SIAM J. Sci. Stat. Comput., 11(5):824–837, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin J. Gander .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gander, M.J., Jiang, YL., Li, RJ. (2013). Parareal Schwarz Waveform Relaxation Methods. In: Bank, R., Holst, M., Widlund, O., Xu, J. (eds) Domain Decomposition Methods in Science and Engineering XX. Lecture Notes in Computational Science and Engineering, vol 91. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35275-1_53

Download citation

Publish with us

Policies and ethics