Skip to main content

Optimal Control of the Convergence Rate of Schwarz Waveform Relaxation Algorithms

  • Conference paper
  • First Online:
Domain Decomposition Methods in Science and Engineering XX

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 91))

  • 2107 Accesses

Summary

In this study we present a non-overlapping Schwarz waveform relaxation method applied to the one dimensional unsteady diffusion equation. We derive efficient interface conditions using an optimal control approach once the problem is discretized. Those conditions are compared to the usual optimized conditions derived at the PDE level by solving a min-max problem. The performance of the proposed methodology is illustrated by numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Bibliography

  1. D. Bennequin, M. J. Gander, and L. Halpern. Optimized Schwarz waveform relaxation methods for convection reaction diffusion problems. Technical Report 2004-24, LAGA, Université Paris 13, 2004.

    Google Scholar 

  2. M. J. Gander, L. Halpern, and F. Nataf. Optimal convergence for overlapping and non-overlapping Schwarz waveform relaxation. In Eleventh International Conference on Domain Decomposition Methods (London, 1998), pages 27–36 (electronic). DDM.org, Augsburg, 1999.

    Google Scholar 

  3. M. J. Gander and G. H. Golub. A non-overlapping optimized Schwarz method which converges with arbitrarily weak dependence on h. In Domain decomposition methods in science and engineering, pages 281–288 (electronic). Natl. Auton. Univ. Mex., México, 2003.

    Google Scholar 

  4. M. J. Gander and L. Halpern. Methodes de relaxation d’ondes pour l’equation de la chaleur en dimension 1. C. R. Acad. Sci. Paris, 336(Série I):519–524, 2003.

    Google Scholar 

  5. M. J. Gander and L. Halpern. Optimized Schwarz waveform relaxation methods for advection reaction diffusion problems. SIAM J. Numer. Anal., 45(2):666–697 (electronic), 2007. ISSN 0036–1429. doi: 10.1137/050642137.

    Google Scholar 

  6. M. J. Gander, L. Halpern, and M. Kern. A Schwarz waveform relaxation method for advection-diffusion-reaction problems with discontinuous coefficients and non-matching grids. in Domain decomposition methods in science and engineering XVI, vol. 55 of Lect. Notes Comput. Sci. Eng., Springer, Berlin, pp. 283–290, 2007.

    Google Scholar 

  7. F. Lemarié, L. Debreu, and E. Blayo. Optimized global-in-time Schwarz algorithm for diffusion equations with discontinuous and spatially variable coefficients. Research Report RR-6663, INRIA, 2008.

    Google Scholar 

  8. F. Lemarié, L. Debreu, and E. Blayo. Toward an optimized global-in-time Schwarz algorithm for diffusion equations with discontinuous and spatially variable coefficients, part 1 : the constant coefficients case. Electron. Trans. Numer. Anal., 2012. (in revision).

    Google Scholar 

  9. J.-L. Lions. Contrôle optimal des systèmes gouvernés par des équations aux dérivées partielles. Dunod, Paris, 1968.

    Google Scholar 

Download references

Acknowledgements

This research was partially supported by the ANR project COMMA (COupling in Multi-physics and multi-scale problems: Models and Algorithms) and by the INRIA project-team MOISE (Modelling, Observation and Identification for Environmental Sciences). We are thankful to Héloïse Pelen (ENS Lyon) for her contribution during her masters internship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Lemarié .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lemarié, F., Debreu, L., Blayo, E. (2013). Optimal Control of the Convergence Rate of Schwarz Waveform Relaxation Algorithms. In: Bank, R., Holst, M., Widlund, O., Xu, J. (eds) Domain Decomposition Methods in Science and Engineering XX. Lecture Notes in Computational Science and Engineering, vol 91. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35275-1_71

Download citation

Publish with us

Policies and ethics