Abstract
While it is relatively easy to start an online advertising campaign, proper allocation of the marketing budget is far from trivial. A major challenge faced by the marketers attempting to optimize their campaigns is in the sheer number of variables involved, the many individual decisions they make in fixing or changing these variables, and the nontrivial short and long-term interplay among these variables and decisions.
In this paper, we study interactions among individual advertising decisions using a Markov model of user behavior. We formulate the budget allocation task of an advertiser as a constrained optimal control problem for a Markov Decision Process (MDP). Using the theory of constrained MDPs, a simple LP algorithm yields the optimal solution. Our main result is that, under a reasonable assumption that online advertising has positive carryover effects on the propensity and the form of user interactions with the same advertiser in the future, there is a simple greedy algorithm for the budget allocation with the worst-case running time cubic in the number of model states (potential advertising keywords) and an efficient parallel implementation in a distributed computing framework like MapReduce. Using real-world anonymized datasets from sponsored search advertising campaigns of several advertisers, we evaluate performance of the proposed budget allocation algorithm, and show that the greedy algorithm performs well compared to the optimal LP solution on these datasets and that both show consistent 5-10% improvement in the expected revenue against the optimal baseline algorithm ignoring carryover effects.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aggarwal, G., Feldman, J., Muthukrishnan, S., Pál, M.: Sponsored Search Auctions with Markovian Users. In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 621–628. Springer, Heidelberg (2008)
Altman, E.: Constrained Markov Decision Processes. Technical Report RR-2574, INRIA, 05 (1995)
Archak, N., Mirrokni, V., Muthukrishnan, M.: Mining advertiser-specific user behavior using adfactors. In: Proceedings of the Nineteenth International World Wide Web Conference, WWW 2010 (2010) (forthcoming)
Athey, S., Ellison, G.: Position auctions with consumer search. Working Paper (2008), Available at SSRN: http://ssrn.com/abstract=1454986
Blattberg, R.C., Jeuland, A.P.: A micromodeling approach to investigate the advertising-sales relationship. Management Science 27(9), 988–1005 (1981)
Charikar, M., Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: On targeting markov segments. In: STOC 1999: Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, pp. 99–108 (1999)
Clarke, D.G.: Econometric measurement of the duration of advertising effect on sales. Journal of Marketing Research 13(4), 345–357 (1976)
comScore. Whither the click? comscore brand metrix norms prove ‘view-thru’ value of on-line advertising (2008), http://www.comscore.com/press/release.asp?press=2587
Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. In: STOC 1987: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pp. 1–6 (1987)
Dar, E.E., Mansour, Y., Mirrokni, V., Muthukrishnan, S., Nadav, U.: Budget optimization for broad-match ad auctions. In: WWW, World Wide Web Conference (2009)
Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Communications of ACM 51(1), 107–113 (2008)
Feldman, J., Muthukrishnan, S., Pal, M., Stein, C.: Budget optimization in search-based advertising auctions. In: EC 2007: Proceedings of the 8th ACM Conference on Electronic Commerce, pp. 40–49 (2007)
Ghose, A., Yang, S.: An empirical analysis of sponsored search performance in search engine advertising. In: WSDM 2008: Proceedings of the International Conference on Web Search and Web Data Mining, pp. 241–250 (2008)
Ghose, A., Yang, S.: Analyzing the Relationship between Organic and Sponsored Search Advertising: Positive, Negative or Zero Interdependence? Marketing Science (2009) (forthcoming)
Ghosh, A., Sayedi, A.: Expressive auctions for externalities in online advertising. In: Proceedings of the Nineteenth International World Wide Web Conference, WWW 2010 (2010) (forthcoming)
Gomes, R., Immorlica, N., Markakis, E.: Externalities in Keyword Auctions: An Empirical and Theoretical Assessment. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 172–183. Springer, Heidelberg (2009)
Kempe, D., Mahdian, M.: A Cascade Model for Externalities in Sponsored Search. In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 585–596. Springer, Heidelberg (2008)
Lewis, R., Reiley, D.: Retail advertising works!: Measuring the effects of advertising on sales via a controlled experiment on yahoo! Working paper, Yahoo! Research (2009)
Muthukrishnan, S.M., Pál, M., Svitkina, Z.: Stochastic Models for Budget Optimization in Search-Based Advertising. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp. 131–142. Springer, Heidelberg (2007)
Page, L., Brin, S., Motwani, R. and Winograd, T.: The pagerank citation ranking: Bringing order to the web. Technical Report. Stanford InfoLab (1999)
PricewaterhouseCoopers and the Interactive Advertising Bureau. IAB Internet advertising revenue report (2009), http://www.docstoc.com/docs/5134258/IAB-2008-Report
Topkis, D.M.: Minimizing a Submodular Function on a Lattice. Operations Research 26(2), 305–321 (1978)
Wu, J., Cook, J., Victor, J., Strong, E.C.: A Two-Stage Model of the Promotional Performance of Pure Online Firms. Information Systems Research 16(4), 334–351 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Archak, N., Mirrokni, V., Muthukrishnan, S. (2012). Budget Optimization for Online Campaigns with Positive Carryover Effects. In: Goldberg, P.W. (eds) Internet and Network Economics. WINE 2012. Lecture Notes in Computer Science, vol 7695. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35311-6_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-35311-6_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-35310-9
Online ISBN: 978-3-642-35311-6
eBook Packages: Computer ScienceComputer Science (R0)