Abstract
In this paper we propose a multi-objective hierarchical genetic algorithm (MOHGA) for modular neural network optimization. A granular approach is used due to the fact that the dataset is divided into granules or sub modules. The main objective of this method is to know the optimal number of sub modules or granules, but also allow the optimization of the number of hidden layers, number of neurons per hidden layer, error goal and learning algorithms per module. The proposed MOHGA is based on the Micro genetic algorithm and was tested for a pattern recognition application. Simulation results show that the proposed modular neural network approach offers advantages over existing neural network models. Finally the modular neural networks are joined using type-2 fuzzy integration, which allows having a system with a better behavior and results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abiyev, R., Altunkaya, K.: Personal Iris Recognition Using Neural Network. Near East University, Department of Computer Engineering, Lefkosa, North Cyprus (April 2008)
Abraham, A., Jain, L., Goldberg, R.: Evolutionary Multiobjective Optimization, 1st edn. Springer (2005); Softcover reprint of hardcover
Auda, G., Kamel, M.S.: Modular Neural Networks a Survey. Int. J. Neural Syst. 9(2), 129–151 (1999)
Azamm, F.: Biologically Inspired Modular Neural Networks. PhD thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia (2000)
Bajpai, S., Jain, K., Jain, N.: Artificial Neural Networks. International Journal of Soft Computing and Engineering (IJSCE) 1(NCAI 2011), 2231–2307 (2011) ISSN: 2231-2307
Bargiela, A., Pedrycz, W.: The roots of granular computing. In: IEEE International Conference on Granular Computing (GrC), pp. 806–809 (2006)
Castillo, O., Melin, P.: Soft Computing for Control of Non-Linear Dynamical Systems. Springer, Heidelberg (2001)
Castillo, O., Melin, P.: Type-2 Fuzzy Logic Theory and Applications, pp. 29–43. Springer, Berlin (2008)
Castro, J.R., Castillo, O., Melin, P.: An Interval Type-2 Fuzzy Logic Toolbox for Control Applications. In: FUZZ-IEEE 2007, pp. 1–6 (2007)
Castro, J.R., Castillo, O., Melin, P., Rodriguez-Diaz, A.: Building Fuzzy Inference Systems with a New Interval Type-2 Fuzzy Logic Toolbox. Transactions on Computational Science 1, 104–114 (2008)
Coello Coello, C.A., Lamont, G.B., van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Springer (2007)
Coello Coello, C.A., Toscano Pulido, G.: A Micro-Genetic Algorithm for Multiobjective Optimization. In: EMO, pp. 126–140 (2001)
Coley, A.: An Introduction to Genetic Algorithms for Scientists and Engineers. Wspc (Har/Dskt edition) (1999)
Database Ear Recognition Laboratory from the University of Science & Technology Beijing (USTB). Found on the Web page: http://www.ustb.edu.cn/resb/en/index.htm (accessed September 21, 2009)
Fonseca, C.M., Fleming, P.J.: Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization. In: ICGA 1993, pp. 416–423 (1993)
Giunchglia, F., Walsh, T.: A theory of abstraction. Artificial Intelligence 56, 323–390 (1992)
Han, J., Dong, J.: Perspectives of Granular Computing in Software Engineering. In: GrC 2007, pp. 66–71 (2007)
Haupt, R., Haupt, S.: Practical Genetic Algorithms, 2nd edn., pp. 42–43. Wiley-Interscience (2004)
Hidalgo, D., Castillo, O., Melin, P.: Type-1 and type-2 fuzzy inference systems as integration methods in modular neural networks for multimodal biometry and its optimization with genetic algorithms. Inf. Sci. 179(13), 2123–2145 (2009)
Hidalgo, D., Castillo, O., Melin, P.: Optimization with genetic algorithms of modular neural networks using interval type-2 fuzzy logic for response integration: The case of multimodal biometry. In: IJCNN 2008, pp. 738–745 (2008)
Hidalgo, D., Castillo, O., Melin, P.: Type-1 and Type-2 Fuzzy Inference Systems as Integration Methods in Modular Neural Networks for Multimodal Biometry and Its Optimization with Genetic Algorithms. Soft Computing for Hybrid Intelligent Systems, 89–114 (2008)
Hidalgo, D., Melin, P., Licea, G., Castillo, O.: Optimization of Type-2 Fuzzy Integration in Modular Neural Networks Using an Evolutionary Method with Applications in Multimodal Biometry. In: Aguirre, A.H., Borja, R.M., Garciá, C.A.R. (eds.) MICAI 2009. LNCS, vol. 5845, pp. 454–465. Springer, Heidelberg (2009)
Hobbs, J.: Granularity. In: Proc. of IJCAI, pp. 432–435 (1985)
Huang, J., Wechsler, H.: Eye Location Using Genetic Algorithm. In: Second International Conference on Audio and Video-Based Biometric Person Authentication, pp. 130–135 (1999)
Jang, J., Sun, C., Mizutani, E.: Neuro-Fuzzy and Soft Computing. Prentice Hall, New Jersey (1997)
Khan, A., Bandopadhyaya, T., Sharma, S.: Classification of Stocks Using Self Organizing Map. International Journal of Soft Computing Applications 4, 19–24 (2009)
Lin, T.Y., Granular computing, announcement of the BISC Special Interest Group on Granular Computing (1997)
Melin, P., Castillo, O.: Hybrid Intelligent Systems for Pattern Recognition Using Soft Computing: An Evolutionary Approach for Neural Networks and Fuzzy Systems, 1st edn., pp. 119–122. Springer (2005)
Melin, P., Kacprzyk, J., Pedrycz, W. (eds.): Bio-inspired Hybrid Intelligent Systems for Image Analysis and Pattern Recognition. SCI, vol. 256. Springer, Heidelberg (2009)
Melin, P., Mendoza, O., Castillo, O.: An improved method for edge detection based on interval type-2 fuzzy logic. Expert Syst. Appl. 37(12), 8527–8535 (2010)
Melin, P., Mendoza, O., Castillo, O.: Face Recognition with an Improved Interval Type-2 Fuzzy Logic Sugeno Integral and Modular Neural Networks. IEEE Transactions on Systems, Man, and Cybernetics, Part A 41(5), 1001–1012 (2011)
Melin, P., Sánchez, D., Castillo, O.: Genetic optimization of modular neural networks with fuzzy response integration for human recognition. Information Sciences 197, 1–19 (2012)
Mendel, J.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Prentice-Hall, Upper Saddle River (2001)
Mendoza, O., Melin, P., Castillo, O.: Interval type-2 fuzzy logic and modular neural networks for face recognition applications. Appl. Soft Comput. 9(4), 1377–1387 (2009)
Mendoza, O., Melin, P., Licea, G.: A hybrid approach for image recognition combining type-2 fuzzy logic, modular neural networks and the Sugeno integral. Inf. Sci. 179(13), 2078–2101 (2009)
Mitchell, M.: An Introduction to Genetic Algorithms, 3rd edn. A Bradford Book (1998)
Moreno, B., Sanchez, A., Velez, J.F.: On the Use of Outer Ear Images for Personal Identification in Security Applications. In: IEEE 33rd Annual International Carnahan Conference on Security Technology, pp. 469–476 (1999)
Nawa, N., Takeshi, F., Hashiyama, T., Uchikawa, Y.: A study on the discovery of relevant fuzzy rules using pseudobacterial genetic algorithm. IEEE Transactions on Industrial Electronics 46(6), 1080–1089 (1999)
Okamura, M., Kikuchi, H., Yager, R., Nakanishi, S.: Character diagnosis of fuzzy systems by genetic algorithm and fuzzy inference. In: Proceedings of the Vietnam-Japan Bilateral Symposium on Fuzzy Systems and Applications, Halong Bay, Vietnam, pp. 468–473 (1998)
Pawlak, Z.: Granularity of knowledge, indiscernibility and rough sets. In: Proceedings of IEEE International Conference on Fuzzy Systems, pp. 106–110 (1998)
Pawlak, Z.: Rough Sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)
Sánchez, D., Melin, P.: Modular Neural Network with Fuzzy Integration and Its Optimization Using Genetic Algorithms for Human Recognition Based on Iris, Ear and Voice Biometrics. In: Melin, P., Kacprzyk, J., Pedrycz, W. (eds.) Soft Computing for Recognition Based on Biometrics. SCI, vol. 312, pp. 85–102. Springer, Heidelberg (2010)
Santos, J.M., Alexandre, L.A., Marques de Sá, J.: Modular Neural Network Task Decomposition Via Entropic Clustering. In: ISDA (1), pp. 62–67 (2006)
Segovia, J., Szczepaniak, P.S., Niedzwiedzinski, M.: E-Commerce and Intelligent Methods, 1st edn., p. 181. Physica-Verlag (2002)
Tang, K.S., Man, K.F., Kwong, S., Liu, Z.F.: Minimal Fuzzy Memberships and Rule Using Hierarchical Genetic Algorithms. IEEE Trans. Ind. Electron. 45(1), 162–169 (1998)
Wang, C., Soh, Y.C., Wang, H., Wang, H.: A Hierarchical Genetic Algorithm for Path Planning in a Static Environment with Obstacles. In: IEEE CCECE 2002 Canadian Conference on Electrical and Computer Engineering, vol. 3, pp. 1652–1657 (2002)
Wang, W., Bridges, S.: Genetic Algorithm Optimization of Membership Functions for Mining Fuzzy Association Rules. Department of Computer Science Mississippi State University (March 2, 2000)
Worapradya, K., Pratishthananda, S.: Fuzzy supervisory PI controller using hierarchical genetic algorithms. In: 5th Asian Control Conference, vol. 3, pp. 1523–1528 (2004)
Yao, J.T.: A ten-year review of granular computing. In: Proceedings of the 3rd IEEE International Conference on Granular Computing (GrC), pp. 734–739 (2007)
Yao, J.T.: Information granulation and granular relationships. In: Proceedings of 2005 IEEE Conference on Granular Computing (GrC), pp. 326–329 (2005)
Yao, Y.Y.: A Partition Model of Granular Computing. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 232–253. Springer, Heidelberg (2004)
Yao, Y.Y.: Granular computing: basic issues and possible solutions. In: Proceedings of the 5th Joint Conferences on Information Sciences, pp. 186–189 (2000)
Yao, Y.Y.: On Modeling Data Mining with Granular Computing. In: 25th International Computer Software and Applications Conference (COMPSAC), pp. 638–649 (2001)
Yao, Y.Y.: Perspectives of granular computing. In: IEEE International Conference on Granular Computing (GrC), pp. 85–90 (2005)
Yu, F., Pedrycz, W.: The design of fuzzy information granules: Tradeoffs between specificity and experimental evidence. Applied Soft Computing 9(1), 264–273 (2009)
Zadeh, L.A.: Fuzzy Sets. Journal of Information and Control 8, 338–353 (1965); Jang, J., Sun, C., Mizutani, E.: Neuro-Fuzzy and Soft Computing. Prentice Hall, New Jersey (1997)
Zadeh, L.A.: Fuzzy sets and information granularity. In: Gupta, M., Ragade, R., Yager, R. (eds.) Advances in Fuzzy Set Theory amd Applications, pp. 3–18. North-Holland Publishing Co. (1979)
Zadeh, L.A.: Towards a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems 19, 111–127 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Sánchez, D., Melin, P. (2013). Multi-Objective Hierarchical Genetic Algorithm for Modular Granular Neural Network Optimization. In: Melin, P., Castillo, O. (eds) Soft Computing Applications in Optimization, Control, and Recognition. Studies in Fuzziness and Soft Computing, vol 294. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35323-9_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-35323-9_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-35322-2
Online ISBN: 978-3-642-35323-9
eBook Packages: EngineeringEngineering (R0)