Skip to main content

Type-2 Fuzzy Weight Adjustment for Backpropagation in Prediction Time Series and Pattern Recognition

  • Chapter
Soft Computing Applications in Optimization, Control, and Recognition

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 294))

  • 1005 Accesses

Abstract

In this paper a genetic algorithm is used to optimize the three neural networks in an ensemble model. Genetic algorithms are also used to optimize the two type-2 fuzzy systems that work in the backpropagation learning method with type-2 fuzzy weight adjustment. The mathematical analysis of the proposed learning method architecture and the adaptation of type-2 fuzzy weights are presented. The proposed method is based on recent methods that handle weight adaptation and especially fuzzy weights. In this work an ensemble neural network of three neural networks and average integration to obtain the final result is presented. The proposed approach is applied to a case of time series prediction and to pattern recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abiyev, R.H.: A Type-2 Fuzzy Wavelet Neural Network for Time Series Prediction. In: García-Pedrajas, N., Herrera, F., Fyfe, C., Benítez, J.M., Ali, M. (eds.) IEA/AIE 2010, Part III. LNCS, vol. 6098, pp. 518–527. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Barbounis, T.G., Theocharis, J.B.: Locally Recurrent Neural Networks for Wind Speed Prediction using Spatial Correlation. Information Sciences 177(24), 5775–5797 (2007)

    Article  Google Scholar 

  3. Beale, E.M.L.: A Derivation of Conjugate Gradients. In: Lootsma, F.A. (ed.) Numerical Methods for Nonlinear Optimization, pp. 39–43. Academic Press, London (1972)

    Google Scholar 

  4. Casasent, D., Natarajan, S.: A Classifier Neural Net with Complex-Valued Weights and Square-Law Nonlinearities. Neural Networks 8(6), 989–998 (1995)

    Article  Google Scholar 

  5. Castillo, O., Melin, P.: A review on the design and optimization of interval type-2 fuzzy controllers. Applied Soft Computing 12(4), 1267–1278 (2012)

    Article  Google Scholar 

  6. Castro, J., Castillo, O., Melin, P., Rodríguez-Díaz, A.: A Hybrid Learning Algorithm for a Class of Interval Type-2 Fuzzy Neural Networks. Information Sciences 179(13), 2175–2193 (2009)

    Article  MATH  Google Scholar 

  7. Castro, J.R., Castillo, O., Melin, P., Mendoza, O., Rodríguez-Díaz, A.: An Interval Type-2 Fuzzy Neural Network for Chaotic Time Series Prediction with Cross-Validation and Akaike Test. In: Castillo, O., Kacprzyk, J., Pedrycz, W. (eds.) Soft Computing for Intell. Control and Mob. Robot. SCI, vol. 318, pp. 269–285. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Cazorla, M., Escolano, F.: Two Bayesian Methods for Junction Detection. IEEE Transaction on Image Processing 12(3), 317–327 (2003)

    Article  MathSciNet  Google Scholar 

  9. De Wilde, O.: The Magnitude of the Diagonal Elements in Neural Networks. Neural Networks 10(3), 499–504 (1997)

    Article  Google Scholar 

  10. Draghici, S.: On the Capabilities of Neural Networks using Limited Precision Weights. Neural Networks 15(3), 395–414 (2002)

    Article  Google Scholar 

  11. Feuring, T.: Learning in Fuzzy Neural Networks. In: IEEE International Conference on Neural Networks, vol. 2, pp. 1061–1066 (1996)

    Google Scholar 

  12. Fletcher, R., Reeves, C.M.: Function Minimization by Conjugate Gradients. Computer Journal 7, 149–154 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gedeon, T.: Additive Neural Networks and Periodic Patterns. Neural Networks 12(4-5), 617–626 (1999)

    Article  Google Scholar 

  14. Hagan, M.T., Demuth, H.B., Beale, M.H.: Neural Network Design, p. 736. PWS Publishing, Boston (1996)

    Google Scholar 

  15. Hagras, H.: Type-2 Fuzzy Logic Controllers: A Way Forward for Fuzzy Systems in Real World Environments. In: IEEE World Congress on Computational Intelligence, pp. 181–200 (2008)

    Google Scholar 

  16. Haupt, R., Haupt, S.: Practical Genetic Algorithms, p. 272. John Wiley and Sons, Inc., Hoboken (2004)

    MATH  Google Scholar 

  17. Ishibuchi, H., Morioka, K., Tanaka, H.: A Fuzzy Neural Network with Trapezoid Fuzzy Weights, Fuzzy Systems. In: IEEE World Congress on Computational Intelligence, vol. 1, pp. 228–233 (1994)

    Google Scholar 

  18. Ishibuchi, H., Tanaka, H., Okada, H.: Fuzzy Neural Networks with Fuzzy Weights and Fuzzy Biases. In: IEEE International Conference on Neural Networks, vol. 3, pp. 1650–1655 (1993)

    Google Scholar 

  19. Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-Fuzzy and Soft Computing: a Computational Approach to Learning and Machine Intelligence, p. 614. Prentice Hall (1997)

    Google Scholar 

  20. Kamarthi, S., Pittner, S.: Accelerating Neural Network Training using Weight Extrapolations. Neural Networks 12(9), 1285–1299 (1999)

    Article  Google Scholar 

  21. Karnik, N., Mendel, J.: Applications of Type-2 Fuzzy Logic Systems to Forecasting of Time-Series. Information Sciences 120(1-4), 89–111 (1999)

    Article  MATH  Google Scholar 

  22. Martinez, G., Melin, P., Bravo, D., Gonzalez, F., Gonzalez, M.: Modular Neural Networks and Fuzzy Sugeno Integral for Face and Fingerprint Recognition. In: Abraham, A., de Baets, B., Köppen, M., Nickolay, B. (eds.) Applied Soft Computing Technologies: The Challenge of Complexity. ASC, vol. 34, pp. 603–618. Springer, Heidelberg (2006)

    Google Scholar 

  23. Melin, P.: Modular Neural Networks and Type-2 Fuzzy Systems for Pattern Recognition, pp. 1–204. Springer (2012)

    Google Scholar 

  24. Meltser, M., Shoham, M., Manevitz, L.: Approximating Functions by Neural Networks: A Constructive Solution in the Uniform Norm. Neural Networks 9(6), 965–978 (1996)

    Article  Google Scholar 

  25. Moller, M.F.: A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning. Neural Networks 6, 525–533 (1993)

    Article  Google Scholar 

  26. Monirul Islam, M.D., Murase, K.: A New Algorithm to Design Compact Two-Hidden-Layer Artificial Neural Networks. Neural Networks 14(9), 1265–1278 (2001)

    Article  Google Scholar 

  27. Neville, R.S., Eldridge, S.: Transformations of Sigma–Pi Nets: Obtaining Reflected Functions by Reflecting Weight Matrices. Neural Networks 15(3), 375–393 (2002)

    Article  Google Scholar 

  28. Phansalkar, V.V., Sastry, P.S.: Analysis of the Back-Propagation Algorithm with Momentum. IEEE Transactions on Neural Networks 5(3), 505–506 (1994)

    Article  Google Scholar 

  29. Powell, M.J.D.: Restart Procedures for the Conjugate Gradient Method. Mathematical Programming 12, 241–254 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pulido, M., Melin, P., Castillo, O.: Genetic Optimization of Ensemble Neural Networks for Complex Time Series Prediction. IJCNN, 202–206 (2011)

    Google Scholar 

  31. Salazar, P.A., Melin, P., Castillo, O.: A New Biometric Recognition Technique Based on Hand Geometry and Voice Using Neural Networks and Fuzzy Logic. In: Castillo, O., Melin, P., Kacprzyk, J., Pedrycz, W. (eds.) Soft Computing for Hybrid Intel. Systems. SCI, vol. 154, pp. 171–186. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  32. Sánchez, D., Melin, P.: Modular Neural Network with Fuzzy Integration and Its Optimization Using Genetic Algorithms for Human Recognition Based on Iris, Ear and Voice Biometrics. In: Melin, P., Kacprzyk, J., Pedrycz, W. (eds.) Soft Comp. for Recogn. Based on Biometrics. SCI, vol. 312, pp. 85–102. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  33. Sepúlveda, R., Castillo, O., Melin, P., Montiel, O.: An Efficient Computational Method to Implement Type-2 Fuzzy Logic in Control Applications. In: Melin, P., Castillo, O., Ramírez, E.G., Kacprzyk, J., Pedrycz, W. (eds.) Anal. and Des. of Intel. Sys. using SC Tech. ASC, vol. 41, pp. 45–52. Springer, Heidelberg (2007)

    Google Scholar 

  34. Valdez, F., Melin, P., Parra, H.: Parallel Genetic Algorithms for Optimization of Modular Neural Networks in Pattern Recognition. In: IJCNN, pp. 314–319 (2011)

    Google Scholar 

  35. Yam, J., Chow, T.: A Weight Initialization Method for Improving Training Speed in Feedforward Neural Network. Neurocomputing 30(1-4), 219–232 (2000)

    Article  Google Scholar 

  36. Yeung, D., Chan, P., Ng, W.: Radial Basis Function Network Learning using Localized Generalization Error Bound. Information Sciences 179(19), 3199–3217 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Gaxiola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gaxiola, F., Melin, P., Valdez, F. (2013). Type-2 Fuzzy Weight Adjustment for Backpropagation in Prediction Time Series and Pattern Recognition. In: Melin, P., Castillo, O. (eds) Soft Computing Applications in Optimization, Control, and Recognition. Studies in Fuzziness and Soft Computing, vol 294. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35323-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35323-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35322-2

  • Online ISBN: 978-3-642-35323-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics