Abstract
In this paper a genetic algorithm is used to optimize the three neural networks in an ensemble model. Genetic algorithms are also used to optimize the two type-2 fuzzy systems that work in the backpropagation learning method with type-2 fuzzy weight adjustment. The mathematical analysis of the proposed learning method architecture and the adaptation of type-2 fuzzy weights are presented. The proposed method is based on recent methods that handle weight adaptation and especially fuzzy weights. In this work an ensemble neural network of three neural networks and average integration to obtain the final result is presented. The proposed approach is applied to a case of time series prediction and to pattern recognition.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abiyev, R.H.: A Type-2 Fuzzy Wavelet Neural Network for Time Series Prediction. In: García-Pedrajas, N., Herrera, F., Fyfe, C., Benítez, J.M., Ali, M. (eds.) IEA/AIE 2010, Part III. LNCS, vol. 6098, pp. 518–527. Springer, Heidelberg (2010)
Barbounis, T.G., Theocharis, J.B.: Locally Recurrent Neural Networks for Wind Speed Prediction using Spatial Correlation. Information Sciences 177(24), 5775–5797 (2007)
Beale, E.M.L.: A Derivation of Conjugate Gradients. In: Lootsma, F.A. (ed.) Numerical Methods for Nonlinear Optimization, pp. 39–43. Academic Press, London (1972)
Casasent, D., Natarajan, S.: A Classifier Neural Net with Complex-Valued Weights and Square-Law Nonlinearities. Neural Networks 8(6), 989–998 (1995)
Castillo, O., Melin, P.: A review on the design and optimization of interval type-2 fuzzy controllers. Applied Soft Computing 12(4), 1267–1278 (2012)
Castro, J., Castillo, O., Melin, P., Rodríguez-Díaz, A.: A Hybrid Learning Algorithm for a Class of Interval Type-2 Fuzzy Neural Networks. Information Sciences 179(13), 2175–2193 (2009)
Castro, J.R., Castillo, O., Melin, P., Mendoza, O., Rodríguez-Díaz, A.: An Interval Type-2 Fuzzy Neural Network for Chaotic Time Series Prediction with Cross-Validation and Akaike Test. In: Castillo, O., Kacprzyk, J., Pedrycz, W. (eds.) Soft Computing for Intell. Control and Mob. Robot. SCI, vol. 318, pp. 269–285. Springer, Heidelberg (2010)
Cazorla, M., Escolano, F.: Two Bayesian Methods for Junction Detection. IEEE Transaction on Image Processing 12(3), 317–327 (2003)
De Wilde, O.: The Magnitude of the Diagonal Elements in Neural Networks. Neural Networks 10(3), 499–504 (1997)
Draghici, S.: On the Capabilities of Neural Networks using Limited Precision Weights. Neural Networks 15(3), 395–414 (2002)
Feuring, T.: Learning in Fuzzy Neural Networks. In: IEEE International Conference on Neural Networks, vol. 2, pp. 1061–1066 (1996)
Fletcher, R., Reeves, C.M.: Function Minimization by Conjugate Gradients. Computer Journal 7, 149–154 (1964)
Gedeon, T.: Additive Neural Networks and Periodic Patterns. Neural Networks 12(4-5), 617–626 (1999)
Hagan, M.T., Demuth, H.B., Beale, M.H.: Neural Network Design, p. 736. PWS Publishing, Boston (1996)
Hagras, H.: Type-2 Fuzzy Logic Controllers: A Way Forward for Fuzzy Systems in Real World Environments. In: IEEE World Congress on Computational Intelligence, pp. 181–200 (2008)
Haupt, R., Haupt, S.: Practical Genetic Algorithms, p. 272. John Wiley and Sons, Inc., Hoboken (2004)
Ishibuchi, H., Morioka, K., Tanaka, H.: A Fuzzy Neural Network with Trapezoid Fuzzy Weights, Fuzzy Systems. In: IEEE World Congress on Computational Intelligence, vol. 1, pp. 228–233 (1994)
Ishibuchi, H., Tanaka, H., Okada, H.: Fuzzy Neural Networks with Fuzzy Weights and Fuzzy Biases. In: IEEE International Conference on Neural Networks, vol. 3, pp. 1650–1655 (1993)
Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-Fuzzy and Soft Computing: a Computational Approach to Learning and Machine Intelligence, p. 614. Prentice Hall (1997)
Kamarthi, S., Pittner, S.: Accelerating Neural Network Training using Weight Extrapolations. Neural Networks 12(9), 1285–1299 (1999)
Karnik, N., Mendel, J.: Applications of Type-2 Fuzzy Logic Systems to Forecasting of Time-Series. Information Sciences 120(1-4), 89–111 (1999)
Martinez, G., Melin, P., Bravo, D., Gonzalez, F., Gonzalez, M.: Modular Neural Networks and Fuzzy Sugeno Integral for Face and Fingerprint Recognition. In: Abraham, A., de Baets, B., Köppen, M., Nickolay, B. (eds.) Applied Soft Computing Technologies: The Challenge of Complexity. ASC, vol. 34, pp. 603–618. Springer, Heidelberg (2006)
Melin, P.: Modular Neural Networks and Type-2 Fuzzy Systems for Pattern Recognition, pp. 1–204. Springer (2012)
Meltser, M., Shoham, M., Manevitz, L.: Approximating Functions by Neural Networks: A Constructive Solution in the Uniform Norm. Neural Networks 9(6), 965–978 (1996)
Moller, M.F.: A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning. Neural Networks 6, 525–533 (1993)
Monirul Islam, M.D., Murase, K.: A New Algorithm to Design Compact Two-Hidden-Layer Artificial Neural Networks. Neural Networks 14(9), 1265–1278 (2001)
Neville, R.S., Eldridge, S.: Transformations of Sigma–Pi Nets: Obtaining Reflected Functions by Reflecting Weight Matrices. Neural Networks 15(3), 375–393 (2002)
Phansalkar, V.V., Sastry, P.S.: Analysis of the Back-Propagation Algorithm with Momentum. IEEE Transactions on Neural Networks 5(3), 505–506 (1994)
Powell, M.J.D.: Restart Procedures for the Conjugate Gradient Method. Mathematical Programming 12, 241–254 (1977)
Pulido, M., Melin, P., Castillo, O.: Genetic Optimization of Ensemble Neural Networks for Complex Time Series Prediction. IJCNN, 202–206 (2011)
Salazar, P.A., Melin, P., Castillo, O.: A New Biometric Recognition Technique Based on Hand Geometry and Voice Using Neural Networks and Fuzzy Logic. In: Castillo, O., Melin, P., Kacprzyk, J., Pedrycz, W. (eds.) Soft Computing for Hybrid Intel. Systems. SCI, vol. 154, pp. 171–186. Springer, Heidelberg (2008)
Sánchez, D., Melin, P.: Modular Neural Network with Fuzzy Integration and Its Optimization Using Genetic Algorithms for Human Recognition Based on Iris, Ear and Voice Biometrics. In: Melin, P., Kacprzyk, J., Pedrycz, W. (eds.) Soft Comp. for Recogn. Based on Biometrics. SCI, vol. 312, pp. 85–102. Springer, Heidelberg (2010)
Sepúlveda, R., Castillo, O., Melin, P., Montiel, O.: An Efficient Computational Method to Implement Type-2 Fuzzy Logic in Control Applications. In: Melin, P., Castillo, O., Ramírez, E.G., Kacprzyk, J., Pedrycz, W. (eds.) Anal. and Des. of Intel. Sys. using SC Tech. ASC, vol. 41, pp. 45–52. Springer, Heidelberg (2007)
Valdez, F., Melin, P., Parra, H.: Parallel Genetic Algorithms for Optimization of Modular Neural Networks in Pattern Recognition. In: IJCNN, pp. 314–319 (2011)
Yam, J., Chow, T.: A Weight Initialization Method for Improving Training Speed in Feedforward Neural Network. Neurocomputing 30(1-4), 219–232 (2000)
Yeung, D., Chan, P., Ng, W.: Radial Basis Function Network Learning using Localized Generalization Error Bound. Information Sciences 179(19), 3199–3217 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Gaxiola, F., Melin, P., Valdez, F. (2013). Type-2 Fuzzy Weight Adjustment for Backpropagation in Prediction Time Series and Pattern Recognition. In: Melin, P., Castillo, O. (eds) Soft Computing Applications in Optimization, Control, and Recognition. Studies in Fuzziness and Soft Computing, vol 294. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35323-9_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-35323-9_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-35322-2
Online ISBN: 978-3-642-35323-9
eBook Packages: EngineeringEngineering (R0)