Abstract
Rough Non-deterministic Information Analysis (RNIA) is a rough sets-based framework for handling tables with exact and inexact data. Under this framework, we investigated possible equivalence relations, data dependencies, rule generation, rule stability, question-answering systems, as well as missing and interval values as special cases of non-deterministic values. In this paper, we briefly survey RNIA, and report the state of its underlying software implementation. We also discuss to what extent RNIA can be seen as an example of a new emerging paradigm in machine learning.
This work is supported by the Grant-in-Aid for Scientific Research (C) (No.22500204), Japan Society for the Promotion of Science. The fourth author was partially supported by the Polish National Science Centre grant 2011/01/B/ST6/03867.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Bocca, J.B., Jarke, M., Zaniolo, C. (eds.) VLDB 1994, pp. 487–499. Morgan Kaufmann (1994)
Grzymała-Busse, J.W.: Data with Missing Attribute Values: Generalization of Indiscernibility Relation and Rule Induction. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 78–95. Springer, Heidelberg (2004)
Kryszkiewicz, M.: Rules in incomplete information systems. Information Sciences 113(3-4), 271–292 (1999)
Lipski, W.: On databases with incomplete information. Journal of the ACM 28(1), 41–70 (1981)
Nakata, M., Sakai, H.: Applying Rough Sets to Information Tables Containing Possibilistic Values. In: Gavrilova, M.L., Tan, C.J.K., Wang, Y., Yao, Y., Wang, G. (eds.) Transactions on Computational Science II. LNCS, vol. 5150, pp. 180–204. Springer, Heidelberg (2008)
Orłowska, E., Pawlak, Z.: Representation of nondeterministic information. Theoretical Computer Science 29(1-2), 27–39 (1984)
Pawlak, Z.: Systemy Informacyjne: Podstawy Teoretyczne. WNT (1983) (in Polish; English translation: Information Systems: Theoretical Foundations)
Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishers (1991)
Peters, G., Lingras, P., Ślęzak, D., Yao, Y. (eds.): Selected Methods and Applications of Rough Sets in Management and Engineering. Springer (2012)
Polkowski, L., Skowron, A. (eds.): Rough Sets in Knowledge Discovery, Parts 1 & 2. Physica-Verlag (1998)
RNIA software logs, http://www.mns.kyutech.ac.jp/~sakai/RNIA
Sakai, H.: Possible Equivalence Relations and Their Application to Hypothesis Generation in Non-deterministic Information Systems. In: Peters, J.F., Skowron, A., Dubois, D., Grzymała-Busse, J.W., Inuiguchi, M., Polkowski, L. (eds.) Transactions on Rough Sets II. LNCS, vol. 3135, pp. 82–106. Springer, Heidelberg (2004)
Sakai, H., Ishibashi, R., Koba, K., Nakata, M.: Rules and Apriori Algorithm in Non-deterministic Information Systems. In: Peters, J.F., Skowron, A., Rybiński, H. (eds.) Transactions on Rough Sets IX. LNCS, vol. 5390, pp. 328–350. Springer, Heidelberg (2008)
Sakai, H., Koba, K., Nakata, M.: Rough sets based rule generation from data with categorical and numerical values. Journal of Advanced Computational Intelligence and Intelligent Informatics 12(5), 426–434 (2008)
Sakai, H., Okuma, A.: Basic Algorithms and Tools for Rough Non-deterministic Information Analysis. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 209–231. Springer, Heidelberg (2004)
Sakai, H., Nakata, M., Ślęzak, D.: A Prototype System for Rule Generation in Lipski’s Incomplete Information Databases. In: Kuznetsov, S.O., Ślęzak, D., Hepting, D.H., Mirkin, B.G. (eds.) RSFDGrC 2011. LNCS, vol. 6743, pp. 175–182. Springer, Heidelberg (2011)
Sakai, H., Okuma, H., Nakata, M., Ślęzak, D.: Stable rule extraction and decision making in rough non-deterministic information analysis. International Journal of Hybrid Intelligent Systems 8(1), 41–57 (2011)
UCI Machine Learning Repository, http://mlearn.ics.uci.edu/MLRepository.html
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sakai, H., Wu, M., Nakata, M., Ślęzak, D. (2012). Rough Sets-Based Machine Learning over Non-deterministic Data: A Brief Survey. In: Hassanien, A.E., Salem, AB.M., Ramadan, R., Kim, Th. (eds) Advanced Machine Learning Technologies and Applications. AMLTA 2012. Communications in Computer and Information Science, vol 322. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35326-0_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-35326-0_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-35325-3
Online ISBN: 978-3-642-35326-0
eBook Packages: Computer ScienceComputer Science (R0)