Skip to main content

LWDOSM: Language for Writing Descriptors of Outline Shape of Molecules

  • Conference paper
Advanced Machine Learning Technologies and Applications (AMLTA 2012)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 322))

Abstract

The basic idea underlying similarity searching is the similar property principle, which states that structurally similar molecules will exhibit similar physicochemical and biological properties. In this paper a new language for writing 2D molecular descriptor based on outline shape (LWDOSM) is introduced. LWDOSM is a new method of obtaining a rough description of 2D molecular structure from its 2D connection graph in the form of character string. LWDOSM allows rigorous structure specification using very small and simplerule. In this paper, we study the possibility of using the textual descriptor for describing the 2D structure of the molecule. Simulated virtual screening experiments with the MDDR database show clearly the superiority of the LWDOSM descriptor compared to many standard descriptors tested in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Christie, B.D., Leland, B.A., Nourse, J.G.: Structure searching in chemical databases by direct lookup methods. J. Chem. Inf. Comput. Sci. 33, 545–547 (1993)

    Article  Google Scholar 

  2. Fisanick, W., Lipkus, A.H., Rusinko, A.: Similarity searching on CAS Registry substances. 2. D structural similarity. J. Chem. Inf. Comp. Sci. 34, 130–140 (1994)

    Article  Google Scholar 

  3. Figueras, J.: Substructure Search by Set Reduction. J. Chem. 12, 237–244 (1972)

    Google Scholar 

  4. Willett, P., Barnard, J.M., Downs, G.M.: Chemical Similarity Searching. J. Chem. Inf. Comput. Sci. 38, 983–996 (1998)

    Article  Google Scholar 

  5. Johnson, M.A., Maggiora, G.M.: Concepts and Application of Molecular Similarity. John Wiley, New York (1990)

    Google Scholar 

  6. Sheridan, R.P., Kearsley, S.K.: Why do we need so many chemical similarity search methods? Drug Discov. Today 7, 903–911 (2002)

    Article  Google Scholar 

  7. Rarey, M., Dixon, J.S.: Feature trees: A new molecular similarity measure based on tree matching. J. Comput. Aided Mol. Des. 12, 471–490 (1998)

    Article  Google Scholar 

  8. Rarey, M., Stahl, M.: Similarity searching in large combinatorial chemistry spaces. Journal of Computer-Aided Molecular Design 15(6), 497–520 (2001)

    Article  Google Scholar 

  9. Leach, A.R., Gillet, V.J.: An Introduction to Chemoinformatics. Kluwer, Dordrecht (2003)

    Google Scholar 

  10. Wild, D.J., Willett, P.: Similarity Searching in Files of Three-Dimensional Chemical Structures. Alignment of Molecular Electrostatic Potential Fields with a Genetic Algorithm. J. Chem. Inf. Comput. Sci. 36, 159–167 (1996)

    Article  Google Scholar 

  11. Kirchmair, J., Distinto, S., Markt, P., Schuster, D., Spitzer, G.M., Liedl, K.R., Wolber, G.: How to Optimize Shape-Based Virtual Screening: Choosing the Right Query and Including Chemical Information. J. Chem. Inf. Model. 49, 678–692 (2009)

    Article  Google Scholar 

  12. Rush, T.S., Grant, J.A., Mosyak, L., Nicholls, A.: A Shape-Based 3-D Scaffold Hopping Method and Its Application to a Bacterial Protein−Protein Interaction. J. Med. Chem. 48, 1489–1495 (2005)

    Article  Google Scholar 

  13. Warr, W.A.: Representation of chemical structures. Wiley Interdisciplinary Reviews: Computational Molecular Science 1, 557–579 (2011)

    Article  Google Scholar 

  14. Hall, L.H., Kier, L.B.: Issues in representation of molecular structure: The development of molecular connectivity. J. Mol. Graph. 20, 4–18 (2001)

    Article  Google Scholar 

  15. Kogej, T., Engkvist, O., Blomberg, N., Muresan, S.: Multifingerprint Based Similarity Searches for Targeted Class Compound Selection. J. Chem. Inf. Model. 46, 1201–1213 (2006)

    Article  Google Scholar 

  16. Larabi, S., Bouagar, S., Trespaderne, F.M., de la Fuente Lopez, E.: LWDOS: Language for Writing Descriptors of Outline Shapes. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 1014–1021. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  17. Weininger, D.: SMILES, A chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comp. Sci. 28, 31–36 (1988)

    Article  Google Scholar 

  18. SciTegicAccelrys Inc.

    Google Scholar 

  19. Yap, C.W.: PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem. 32, 1466–1474 (2011)

    Article  Google Scholar 

  20. Abdo, A., Chen, B., Mueller, C., Salim, N., Willett, P.: Ligand-Based Virtual Screening Using Bayesian Networks. J. Chem. Inf. Model. 50, 1012–1020 (2010)

    Article  Google Scholar 

  21. Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997)

    Article  Google Scholar 

  22. Brown, R.D., Martin, Y.C.: Use of Structure-Activity Data To Compare Structure-Based Clustering Methods and Descriptors for Use in Compound Selection. J. Chem. Inf. Comput. Sci. 36, 572–584 (1996)

    Article  Google Scholar 

  23. Siegel, S., Castellan, N.J.: Nonparametric Statistics for the Behavioral Sciences. McGraw-Hill, New York (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hentabli, H., Salim, N., Abdo, A., Saeed, F. (2012). LWDOSM: Language for Writing Descriptors of Outline Shape of Molecules. In: Hassanien, A.E., Salem, AB.M., Ramadan, R., Kim, Th. (eds) Advanced Machine Learning Technologies and Applications. AMLTA 2012. Communications in Computer and Information Science, vol 322. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35326-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35326-0_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35325-3

  • Online ISBN: 978-3-642-35326-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics