Skip to main content

Adapting Voting Techniques for Online Forum Thread Retrieval

  • Conference paper
Advanced Machine Learning Technologies and Applications (AMLTA 2012)

Abstract

Online forums or message boards are rich knowledge-based communities. In these communities, thread retrieval is an essential tool facilitating information access. However, the issue on thread search is how to combine evidences from text units(messages) to estimate thread relevance. In this paper, we first rank a list of messages, then score threads by aggregating their ranked messages’ scores. To aggregate the message scores, we adopt several voting techniques that have been applied in ranking aggregates tasks such as blog distillation and expert finding. The experimental result shows that many voting techniques should be preferred over a baseline that treats threads as a concatenation of their messages’ text.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aslam, J.A., Montague, M.: Models for metasearch. In: Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2001, pp. 276–284. ACM, New York (2001)

    Chapter  Google Scholar 

  2. Bhatia, S., Mitra, P.: Adopting inference networks for online thread retrieval. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, Atlanta, Georgia, USA, July 11-15, pp. 1300–1305 (2010)

    Google Scholar 

  3. Elsas, J.L.: Ancestry.com online forum test collection. Technical Report CMU-LTI-017, Language Technologies Institute, School of Computer Science, Carnegie Mellon University (2011)

    Google Scholar 

  4. Elsas, J.L., Arguello, J., Callan, J., Carbonell, J.G.: Retrieval and feedback models for blog feed search. In: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2008, pp. 347–354. ACM, New York (2008)

    Chapter  Google Scholar 

  5. Elsas, J.L., Carbonell, J.G.: It pays to be picky: an evaluation of thread retrieval in online forums. In: Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2009, pp. 714–715. ACM, New York (2009)

    Chapter  Google Scholar 

  6. Macdonald, C., Ounis, I.: Key blog distillation: ranking aggregates. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management, CIKM 2008, pp. 1043–1052. ACM, New York (2008)

    Chapter  Google Scholar 

  7. Macdonald, C., Ounis, I.: Voting techniques for expert search. Knowl. Inf. Syst. 16(3), 259–280 (2008)

    Article  Google Scholar 

  8. Macdonald, C., Ounis, I.: Learning Models for Ranking Aggregates. In: Clough, P., Foley, C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.) ECIR 2011. LNCS, vol. 6611, pp. 517–529. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Mark, S.: Test collection based evaluation of information retrieval systems. Foundations and Trends in Information Retrieval 4, 247–375 (2010)

    Article  MATH  Google Scholar 

  10. Metzler, D., Croft, W.B.: Combining the language model and inference network approaches to retrieval. Inf. Process. Manage. 40(5), 735–750 (2004)

    Article  Google Scholar 

  11. Ogilvie, P., Callan, J.: Combining document representations for known-item search. In: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Informaion Retrieval, SIGIR 2003, pp. 143–150. ACM, New York (2003)

    Chapter  Google Scholar 

  12. Ponte, J.M., Croft, W.B.: A language modeling approach to information retrieval. In: Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 1998, pp. 275–281. ACM, New York (1998)

    Chapter  Google Scholar 

  13. Seo, J., Bruce Croft, W., Smith, D.: Online community search using conversational structures. Information Retrieval 14, 547–571 (2011), 10.1007/s10791-011-9166-8

    Article  Google Scholar 

  14. Seo, J., Croft, W.B.: Blog site search using resource selection. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management, CIKM 2008, pp. 1053–1062. ACM, New York (2008)

    Chapter  Google Scholar 

  15. Shaw, J.A., Fox, E.A., Shaw, J.A., Fox, E.A.: Combination of multiple searches. In: The Second Text REtrieval Conference (TREC-2), pp. 243–252 (1994)

    Google Scholar 

  16. Spoerri, A.: Authority and ranking effects in data fusion. J. Am. Soc. Inf. Sci. Technol. 59(3), 450–460 (2008)

    Article  Google Scholar 

  17. Zhai, C., Lafferty, J.: A study of smoothing methods for language models applied to information retrieval. ACM Trans. Inf. Syst. 22(2), 179–214 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Albaham, A.T., Salim, N. (2012). Adapting Voting Techniques for Online Forum Thread Retrieval. In: Hassanien, A.E., Salem, AB.M., Ramadan, R., Kim, Th. (eds) Advanced Machine Learning Technologies and Applications. AMLTA 2012. Communications in Computer and Information Science, vol 322. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35326-0_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35326-0_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35325-3

  • Online ISBN: 978-3-642-35326-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics