Skip to main content

Neighborhood Search Based Artificial Bee Colony Algorithm for Numerical Function Optimization

  • Conference paper
Swarm, Evolutionary, and Memetic Computing (SEMCCO 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7677))

Included in the following conference series:

  • 3020 Accesses

Abstract

In this paper we investigate about the Neighborhood search mechanisms to improve the performance of Artificial Bee Colony (ABC) on shifted and rotated benchmark functions, proposed in CEC 2005. Although basic version of ABC has been provided with adaptive search mechanism, it will not be able to tackle complex functions with much accuracy unless it was enriched with an efficient neighborhood search scheme. Experimental results have explicitly shown that Neighborhood search based ABC (NS-ABC) performed superiorly well over other variants of ABC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kennedy, J., Eberhert, R.C., Shi, Y.: Swarm Intelligence. Morgan Kaufmann Series in Evolutionary Computation, San Fransisco (2001)

    Google Scholar 

  2. Kennedy, J., Eberhert, R.C.: Particle swarm optimization. In: IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  3. Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. on Evolutionary Computation 1(1), 53–66 (1997)

    Article  Google Scholar 

  4. Passino, K.M.: Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Systems 22(3), 52–67 (2002)

    Article  MathSciNet  Google Scholar 

  5. Karaboga, D.: A idea based on Bee Swarm for Numerical Optimization, Technical Report, TR-06, Erciyes University Engineering Faculty, Computer Engineering Department (2005)

    Google Scholar 

  6. Karaboga, D., Basturk, B.: A Powerful and Efficient Algorithm for Numerical Function Optimization: Artificial Bee Colony (ABC) algorithm. Journal of Global Optimization 39, 459–471 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing 8, 687–697 (2008)

    Article  Google Scholar 

  8. Rajasekhar, A., Abraham, A., Pant, M.: Levy mutated Artificial Bee Colony algorithm for global optimization. In: IEEE International Conference on Systems, Man and Cybernetics (SMC), pp. 655–662 (2011)

    Google Scholar 

  9. Akbari, R., Hedayatzadeh, R., Ziarati, K., Hassanizadeh, B.: A multi-objective artificial bee colony algorithm. Swarm and Evolutionary Computation 2, 39–52 (2012)

    Article  Google Scholar 

  10. Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.-P., Auger, A., Tiwari, S.: Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization, Technical Report, Nanyang Technological University, Singapore (May 2005)

    Google Scholar 

  11. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Trans on Evolutionary Computation 3(2), 82–102 (1999)

    Article  Google Scholar 

  12. Yang, Z., Tang, K., Yao, X.: Large scale evolutionary optimization using cooperative coevolution. Information Sciences 179(15), 2985–2999 (2008)

    Article  MathSciNet  Google Scholar 

  13. Akay, B., Karaboga, D.: A modified Artificial Bee Colony algorithm for real-parameter optimization. Information Sciences 192, 20–142 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rajasekhar, A., Das, S., Panigrahi, B.K., Mallick, M.K. (2012). Neighborhood Search Based Artificial Bee Colony Algorithm for Numerical Function Optimization. In: Panigrahi, B.K., Das, S., Suganthan, P.N., Nanda, P.K. (eds) Swarm, Evolutionary, and Memetic Computing. SEMCCO 2012. Lecture Notes in Computer Science, vol 7677. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35380-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35380-2_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35379-6

  • Online ISBN: 978-3-642-35380-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics