Skip to main content

Brain Storming Incorporated Teaching–Learning–Based Algorithm with Application to Electric Power Dispatch

  • Conference paper
Swarm, Evolutionary, and Memetic Computing (SEMCCO 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7677))

Included in the following conference series:

Abstract

This paper intends to incorporate a brain storming mechanism into the existing Teaching–Learning–Based Optimization (TLBO) algorithm. The potential solutions of TLBO evolve using the primitive steps that are maintained between the acts of teaching and learning. Another novel algorithm, Brain Storm Optimization (BSO) sticks to the philosophy of interchange of ideas by a team to develop as a whole. The brain storming methods from BSO are introduced into the working of TLBO and applied to a well–studied electric power dispatch problem of high intricacy. The results are compared to best of the existing solutions to demonstrate the efficacy of the proposed hybrid algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Back, T., Fogel, D., Michalewicz, Z.: Handbook of evolutionary computation. Oxford University Press, New York (1997)

    Book  Google Scholar 

  2. Bakirtzis, A., Petridis, V., Kazarlis, S.: Genetic algorithm solution to the economic dispatch problem. IEE Gen. Trans. Dist. 141(4), 377–382 (1994)

    Article  Google Scholar 

  3. Gaing, Z.L.: Particle swarm optimization to solving the economic dispatch considering the generator constraints. IEEE Trans. on Power Syst. 18(3), 1187–1195 (2003)

    Article  Google Scholar 

  4. Balamurugan, R., Subramanian, S.: Differential Evolution-based Dynamic Economic Dispatch of Generating Units with Valve-point Effects. Electric Power Components and Systems 36, 828–843 (2008)

    Article  Google Scholar 

  5. Nayak, S.K., Krishnanand, K.R., Panigrahi, B.K., Rout, P.K.: Application of Artificial Bee Colony to Economic Load Dispatch Problem with Ramp Rate Limits and Prohibited Operating Zones. In: IEEE Proc. on Nature and Biologically Inspired Computing, pp. 1237–1242 (2009)

    Google Scholar 

  6. Krishnanand, K.R., Rout, P.K., Panigrahi, B.K., Mohapatra, A.: Solution to Non-convex Electric Power Dispatch Problem Using Seeker Optimization Algorithm. In: Panigrahi, B.K., Das, S., Suganthan, P.N., Dash, S.S. (eds.) SEMCCO 2010. LNCS, vol. 6466, pp. 537–544. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Attaviriyanupap, P., Kita, H., Tanaka, E., Hasegawa, J.: A hybrid EP and SQP for dynamic economic dispatch with nonsmooth fuel cost function. IEEE Trans. Power Syst. 17(2), 411–416 (2002)

    Article  Google Scholar 

  8. Yuan, X., Wang, L., Yuan, Y., Zhang, Y., Cao, B., Yang, B.: A modified differential evolution approach for dynamic economic dispatch with valve-point effects. Energy Conversion and Management 49(12), 3447–3453 (2008)

    Article  Google Scholar 

  9. Victoire, T.A.A., Jeyakumar, A.E.: A modified hybrid EP–SQP approach for dynamic dispatch with valve-point effect. Elect. Power and Energy Syst. 27(8), 594–601 (2005)

    Article  Google Scholar 

  10. Victoire, T.A.A., Jeyakumar, A.E.: Deterministically guided PSO for dynamic dispatch considering valve-point effect. Elect. Power Syst. Res. 73(3), 313–322 (2005)

    Article  Google Scholar 

  11. Victoire, T.A.A., Jeyakumar, A.E.: Reserve constrained dynamic dispatch of units with valve-point effects. IEEE Trans. on Power Syst. 20(3), 1273–1282 (2005)

    Article  Google Scholar 

  12. Yuan, X., Su, A., Yuan, Y., Nie, H., Wang, L.: An improved PSO for dynamic load dispatch of generators with valve-point effects. Energy 34(1), 67–74 (2009)

    Article  Google Scholar 

  13. Hemamalini, S., Simon, S.P.: Dynamic economic dispatch using artificial immune system for units with valve-point effect. Elect. Power and Energy Syst. 33(4), 868–874 (2011)

    Article  Google Scholar 

  14. Pandi, V.R., Panigrahi, B.K.: Dynamic economic load dispatch using hybrid swarm intelligence based harmony search algorithm. Expert Syst. with Appl. 38(7), 8509–8514 (2011)

    Article  Google Scholar 

  15. Rao, R.V., Savsani, V.J., Vakharia, D.P.: Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems. Computer-Aided Design 43(3), 303–315 (2011)

    Article  Google Scholar 

  16. Krishnanand, K.R., Panigrahi, B.K., Rout, P.K., Mohapatra, A.: Application of Multi-Objective Teaching-Learning-Based Algorithm to an Economic Load Dispatch Problem with Incommensurable Objectives. In: Panigrahi, B.K., Suganthan, P.N., Das, S., Satapathy, S.C. (eds.) SEMCCO 2011, Part I. LNCS, vol. 7076, pp. 697–705. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Shi, Y.: An Optimization Algorithm Based on Brainstorming Process. Int. J. of Swarm Intel. Res. 2(4), 35–62 (2011)

    Article  Google Scholar 

  18. Osborn, A.F.: Applied imagination: Principles and procedures of creative problem solving. Charles Scribner’s Son, New York (1963)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ramanand, K.R., Krishnanand, K.R., Panigrahi, B.K., Mallick, M.K. (2012). Brain Storming Incorporated Teaching–Learning–Based Algorithm with Application to Electric Power Dispatch. In: Panigrahi, B.K., Das, S., Suganthan, P.N., Nanda, P.K. (eds) Swarm, Evolutionary, and Memetic Computing. SEMCCO 2012. Lecture Notes in Computer Science, vol 7677. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35380-2_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35380-2_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35379-6

  • Online ISBN: 978-3-642-35380-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics