Skip to main content

An Study on Re-identification in RGB-D Imagery

  • Conference paper
Ambient Assisted Living and Home Care (IWAAL 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7657))

Included in the following conference series:

Abstract

Re-identification is commonly accomplished using appearance features based on salient points and color information. In this paper, we make an study on the use of different features exclusively obtained from depth images captured with RGB-D cameras. The results achieved, using simple geometric features extracted in a top-view setup, seem to provide useful descriptors for the re-identification task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dollár, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: An evaluation of the state of the art. IEEE Transactions on Pattern Analysis and Machine Intelligence 34(4), 743–761 (2012)

    Article  Google Scholar 

  2. Everingham, M., Sivic, J., Zisserman, A.: Taking the bite out of automated naming of characters in tv video. Image and Vision Computing 27, 545–559 (2009)

    Article  Google Scholar 

  3. Jarudi, I., Sinha, P.: Relative roles of internal and external features in face recognition. Technical Report memo 225, CBCL (2005)

    Google Scholar 

  4. D’Angelo, A., Dugelay, J.L.: People re-identification in camera networks based on probabilistic color histograms. In: Proc. SPIE, vol. 7882 (2011)

    Google Scholar 

  5. Lo Presti, L., Sclaroff, S., La Cascia, M.: Object Matching in Distributed Video Surveillance Systems by LDA-Based Appearance Descriptors. In: Foggia, P., Sansone, C., Vento, M. (eds.) ICIAP 2009. LNCS, vol. 5716, pp. 547–557. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Muñoz Salinas, R., Aguirre, E., García-Silvente, M.: People detection and tracking using stereo vision and color. Image Vision Computing 25(6), 995–1007 (2007)

    Article  Google Scholar 

  7. Yahiaoui, T., Khoudour, L., Meurie, C.: Real-time passenger counting in buses using dense stereovision. J. Electron. Imaging 20 (July 2010)

    Google Scholar 

  8. Harville, M.: Stereo person tracking with adaptive plan-view templates of height and occupancy statistics. Image and Vision Computing 22(2), 127–142 (2004)

    Article  MathSciNet  Google Scholar 

  9. Englebienne, G., van Oosterhout, T., Krose, B.: Tracking in sparse multi-camera setups using stereo vision. In: Third ACM/IEEE International Conference on Distributed Smart Cameras, ICDSC (2009)

    Google Scholar 

  10. Zivkovic, Z., der Heijden, F.: Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recognition Letters 27, 773–780 (2006)

    Article  Google Scholar 

  11. Stauffer, G.: Adaptive background mixture models for real-time tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 246–252 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lorenzo-Navarro, J., Castrillón-Santana, M., Hernández-Sosa, D. (2012). An Study on Re-identification in RGB-D Imagery. In: Bravo, J., Hervás, R., Rodríguez, M. (eds) Ambient Assisted Living and Home Care. IWAAL 2012. Lecture Notes in Computer Science, vol 7657. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35395-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35395-6_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35394-9

  • Online ISBN: 978-3-642-35395-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics