Abstract
Almost all previous approaches on coronary artery centerline extraction are data-driven, which try to trace a centerline from an automatically detected or manually specified coronary ostium. No or little high level prior information is used; therefore, the centerline tracing procedure may terminate early at a severe occlusion or an anatomically inconsistent centerline course may be generated. In this work, we propose a model-driven approach to extracting the three major coronary arteries. The relative position of the major coronary arteries with respect to the heart chambers is stable, therefore the automatically segmented chambers can be used to predict the initial position of these coronary centerlines. The initial centerline is further refined using a machine learning based vesselness measurement. The proposed approach can handle variations in the length and topology of an artery, and it is more robust under severe occlusions than a data-driven approach. The extracted centerlines are already labeled, therefore no additional vessel labeling procedure is needed. Quantitative comparison on 54 cardiac CT datasets demonstrates the robustness of the proposed method over a state-of-the-art data-driven approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Lesage, D., Angelini, E.D., Bloch, I., Funka-Lea, G.: A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes. Medical Image Analysis 13(6), 819–845 (2009)
Schaap, M., Metz, C.T., van Walsum, T., et al.: Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms. Medical Image Analysis 13, 701–714 (2009)
Lu, L., Bi, J., Yu, S., Peng, Z., Krishnan, A., Zhou, X.S.: A hierarchical learning approach for 3D tubular structure parsing in medical imaging. In: Proc. Int’l Conf. Computer Vision, pp. 1–8 (2009)
Kitamura, Y., Li, Y., Ito, W.: Automatic coronary extraction by supervised detection and shape matching. In: ISBI, pp. 234–237 (2012)
Lorenz, C., von Berg, J.: A comprehensive shape model of the heart. Medical Image Analysis 10(4), 657–670 (2006)
Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale Vessel Enhancement Filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)
Tek, H., Gulsun, M.A., Laguitton, S., Grady, L., Lesage, D., Funka-Lea, G.: Automatic coronary tree modeling. The Insight Journal (2008)
Zheng, Y., Barbu, A., Georgescu, B., Scheuering, M., Comaniciu, D.: Four-chamber heart modeling and automatic segmentation for 3D cardiac CT volumes using marginal space learning and steerable features. IEEE Trans. Medical Imaging 27(11), 1668–1681 (2008)
Bookstein, F.: Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Trans. Pattern Anal. Machine Intell. 11(6), 567–585 (1989)
Zheng, Y., Tek, H., Funka-Lea, G., Zhou, S.K., Vega-Higuera, F., Comaniciu, D.: Efficient Detection of Native and Bypass Coronary Ostia in Cardiac CT Volumes: Anatomical vs. Pathological Structures. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893, pp. 403–410. Springer, Heidelberg (2011)
Krissian, K., Malandain, G., Ayache, N., Vaillant, R., Trousset, Y.: Model based detection of tubular structures in 3D images. Computer Vision and Image Understanding 80(2), 130–171 (2000)
Friman, O., Kühnel, C., Peitgen, H.: Coronary artery centerline extraction using multiple hypothesis tracking and minimal paths. The Insight Journal (2008)
Tek, H., Zheng, Y., Gulsun, M.A., Funka-Lea, G.: An automatic system for segmenting coronary arteries from CTA. In: Proc. MICCAI Workshop on Computing and Visualization for Intravascular Imaging (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zheng, Y., Shen, J., Tek, H., Funka-Lea, G. (2012). Model-Driven Centerline Extraction for Severely Occluded Major Coronary Arteries. In: Wang, F., Shen, D., Yan, P., Suzuki, K. (eds) Machine Learning in Medical Imaging. MLMI 2012. Lecture Notes in Computer Science, vol 7588. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35428-1_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-35428-1_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-35427-4
Online ISBN: 978-3-642-35428-1
eBook Packages: Computer ScienceComputer Science (R0)