Skip to main content

Model-Driven Centerline Extraction for Severely Occluded Major Coronary Arteries

  • Conference paper
Machine Learning in Medical Imaging (MLMI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7588))

Included in the following conference series:

Abstract

Almost all previous approaches on coronary artery centerline extraction are data-driven, which try to trace a centerline from an automatically detected or manually specified coronary ostium. No or little high level prior information is used; therefore, the centerline tracing procedure may terminate early at a severe occlusion or an anatomically inconsistent centerline course may be generated. In this work, we propose a model-driven approach to extracting the three major coronary arteries. The relative position of the major coronary arteries with respect to the heart chambers is stable, therefore the automatically segmented chambers can be used to predict the initial position of these coronary centerlines. The initial centerline is further refined using a machine learning based vesselness measurement. The proposed approach can handle variations in the length and topology of an artery, and it is more robust under severe occlusions than a data-driven approach. The extracted centerlines are already labeled, therefore no additional vessel labeling procedure is needed. Quantitative comparison on 54 cardiac CT datasets demonstrates the robustness of the proposed method over a state-of-the-art data-driven approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lesage, D., Angelini, E.D., Bloch, I., Funka-Lea, G.: A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes. Medical Image Analysis 13(6), 819–845 (2009)

    Article  Google Scholar 

  2. Schaap, M., Metz, C.T., van Walsum, T., et al.: Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms. Medical Image Analysis 13, 701–714 (2009)

    Article  Google Scholar 

  3. Lu, L., Bi, J., Yu, S., Peng, Z., Krishnan, A., Zhou, X.S.: A hierarchical learning approach for 3D tubular structure parsing in medical imaging. In: Proc. Int’l Conf. Computer Vision, pp. 1–8 (2009)

    Google Scholar 

  4. Kitamura, Y., Li, Y., Ito, W.: Automatic coronary extraction by supervised detection and shape matching. In: ISBI, pp. 234–237 (2012)

    Google Scholar 

  5. Lorenz, C., von Berg, J.: A comprehensive shape model of the heart. Medical Image Analysis 10(4), 657–670 (2006)

    Article  Google Scholar 

  6. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale Vessel Enhancement Filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  7. Tek, H., Gulsun, M.A., Laguitton, S., Grady, L., Lesage, D., Funka-Lea, G.: Automatic coronary tree modeling. The Insight Journal (2008)

    Google Scholar 

  8. Zheng, Y., Barbu, A., Georgescu, B., Scheuering, M., Comaniciu, D.: Four-chamber heart modeling and automatic segmentation for 3D cardiac CT volumes using marginal space learning and steerable features. IEEE Trans. Medical Imaging 27(11), 1668–1681 (2008)

    Article  Google Scholar 

  9. Bookstein, F.: Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Trans. Pattern Anal. Machine Intell. 11(6), 567–585 (1989)

    Article  MATH  Google Scholar 

  10. Zheng, Y., Tek, H., Funka-Lea, G., Zhou, S.K., Vega-Higuera, F., Comaniciu, D.: Efficient Detection of Native and Bypass Coronary Ostia in Cardiac CT Volumes: Anatomical vs. Pathological Structures. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893, pp. 403–410. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Krissian, K., Malandain, G., Ayache, N., Vaillant, R., Trousset, Y.: Model based detection of tubular structures in 3D images. Computer Vision and Image Understanding 80(2), 130–171 (2000)

    Article  MATH  Google Scholar 

  12. Friman, O., Kühnel, C., Peitgen, H.: Coronary artery centerline extraction using multiple hypothesis tracking and minimal paths. The Insight Journal (2008)

    Google Scholar 

  13. Tek, H., Zheng, Y., Gulsun, M.A., Funka-Lea, G.: An automatic system for segmenting coronary arteries from CTA. In: Proc. MICCAI Workshop on Computing and Visualization for Intravascular Imaging (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zheng, Y., Shen, J., Tek, H., Funka-Lea, G. (2012). Model-Driven Centerline Extraction for Severely Occluded Major Coronary Arteries. In: Wang, F., Shen, D., Yan, P., Suzuki, K. (eds) Machine Learning in Medical Imaging. MLMI 2012. Lecture Notes in Computer Science, vol 7588. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35428-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35428-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35427-4

  • Online ISBN: 978-3-642-35428-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics