Abstract
Nowadays, financial data analysis is becoming increasingly important in the business market. As companies collect more and more data from daily operations, they expect to extract useful knowledge from existing collected data to help make reasonable decisions for new customer requests, e.g. user credit category, churn analysis, real estate analysis, etc. Financial institutes have applied different data mining techniques to enhance their business performance. However, simple approach of these techniques could raise a performance issue. Besides, there are very few general models for both understanding and forecasting different financial fields. We present in this paper an integrated model for analyzing financial data. We also evaluate this model with different real-world data to show its performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brause, R., Langsdorf, T., Hepp, M.: Neural Data Mining for Credit Card Fraud Detection. Paper Presented at the Proceedings of the 11th IEEE International Conference on Tools with Artificial Intelligence (1999)
Huang, Y., Huang, B., Kechadi, M.-T.: A Rule-Based Method for Customer Churn Prediction in Telecommunication Services. In: Huang, J.Z., Cao, L., Srivastava, J. (eds.) PAKDD 2011, Part I. LNCS, vol. 6634, pp. 411–422. Springer, Heidelberg (2011)
Weigend, A.: Data Mining in Finance: Report from the Post-NNCM-96 Workshop on Teaching Computer Intensive Methods for Financial Modeling and Data Analysis. In: Fourth International Conference on Neural Networks in the Capital Markets, NNCM 1996, pp. 399–411 (1997)
Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to Data Mining, pp. 150–172. Addison Wesley (2006)
Quinlan, J.R.: Learning First-Order Definitions of Functions. Journal of Artificial Intelligence Research 5, 139–161 (1996)
Wong, B.K., Bodnovich, T.A., Selvi, Y.: Neural network applications in business: a review and analysis of the literature (1988-1995). Decis. Support Syst. 19(4), 301–320 (1997), doi:10.1016/s0167-9236(96)00070-x
Cristianini, N., Taylor, J.-S.: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press (2000)
Cover, T.M., Hart, P.E.: Nearest Neighbour Pattern Classification. Journal of Knowledge Based Systems 8(6), 373–389 (1995)
Wittman, T.: Time-Series Clustering and Association Analysis of Financial Data (December 2002), http://www.math.ucla.edu/~wittman/thesis/project.pdf
Bensmail, H., DeGennaro, R.P.: Analyzing Imputed Financial Data: A New Approach to Cluster Analysis (September 2004), http://www.frbatlanta.org/filelegacydocs/wp0420.pdf
Omanovic, S., Avdagic, Z., Konjicija, S.: On-line evolving clustering for financial statements’ anomalies detection. In: International Symposium on Information, Communication and Automation Technologies, ICAT 2009, vol. XXII, pp. 1–4 (2009)
Berzal, F., Cubero, J.-C., Sánchez, D., Serrano, J.: ART: A Hybrid Classification Model. Machine Learning 54(1), 67–92 (2004), doi:10.1023/B:MACH.0000008085.22487.a6
Min, S.-H., Lee, J., Han, I.: Hybrid genetic algorithms and support vector machines for bankruptcy prediction. Expert Systems with Applications 31(3), 652–660 (2006), doi:10.1016/j.eswa.2005.09.070
Lee, K.C., Han, I., Kwon, Y.: Hybrid neural network models for bankruptcy predictions. Decision Support Systems 18(1), 63–72 (1996), doi:10.1016/0167-9236(96)00018-8
Quinlan, J.R.: C4.5: programs for machine learning. Morgan Kaufmann Publishers Inc. (1993)
Heckerman, D.: Bayesian networks for knowledge discovery. In: Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Advances in Knowledge Dicovery and Data Mining, pp. 273–305. MIT Press (1996)
Jahma, W.: A K-Means Clustering Algorithm. Journal of the Royal Statistical Society Series C (Applied Statistics) 28(1), 100–108 (1979)
Shrivastava, V., Khan, M., Chaudhari, V.K.: Neural network learning improvement using K-means clustering algorithm to improve the performance of web traffic mining. Paper Presented at the 2011 3rd International Conference on Electronics Computer Technology (ICECT), Kanyakumari, April 8-10 (2011)
Hagan, M.T., Demuth, H.B., Beale, M.: Neural network design. PWS Publishing Co. (1996)
Rasmussen, C.E.: Gaussian Processes in Machine Learning. In: Bousquet, O., von Luxburg, U., Rätsch, G. (eds.) Machine Learning 2003. LNCS (LNAI), vol. 3176, pp. 63–71. Springer, Heidelberg (2004), doi:10.1007/978-3-540-28650-9_4
Carvalho, D.R., Freitas, A.A.: A hybrid decision tree/genetic algorithm method for data mining. Information Sciences 163(1-3), 13–35 (2004), doi:10.1016/j.ins.2003.03.013
Davies, D.L., Bouldin, D.W.: A Cluster Separation Measure. IEEE Trans. Pattern Anal. Mach. Intell. 1(2), 224–227 (1979)
Hofmann, P.D.H.: Statlog (German Credit Data) Data Set. UCI Repository of Machine Learning Databases
Merz CLBaCJ Churn Data Set. UCI Repository of Machine Learning Databases
Housing Market statistics from the Office of National Statistics in the UK, http://www.statistics.gov.uk/hub/people-places/housing-and-households/housing-market
Dhillon, I.S., Modha, D.S.: A Data-Clustering Algorithm on Distributed Memory Multiprocessors. In: Zaki, M.J., Ho, C.-T. (eds.) KDD 1999. LNCS (LNAI), vol. 1759, pp. 245–260. Springer, Heidelberg (2000), doi:10.1007/3-540-46502-2_13
Cai, F., Le-Khac, N.-A., Kechai, M.-T.: Clustering Approach for Financial Data analysis. In: The 8th International Conference on Data Mining (DMIN 2012), Nevada, USA, July 16-19 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cai, F., LeKhac, NA., Kechadi, MT. (2012). An Integrated Model for Financial Data Mining. In: Sombattheera, C., Loi, N.K., Wankar, R., Quan, T. (eds) Multi-disciplinary Trends in Artificial Intelligence. MIWAI 2012. Lecture Notes in Computer Science(), vol 7694. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35455-7_28
Download citation
DOI: https://doi.org/10.1007/978-3-642-35455-7_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-35454-0
Online ISBN: 978-3-642-35455-7
eBook Packages: Computer ScienceComputer Science (R0)