Skip to main content

Probabilistic Model Checking of the PDGF Signaling Pathway

  • Conference paper
Transactions on Computational Systems Biology XIV

Part of the book series: Lecture Notes in Computer Science ((TCSB,volume 7625))

Abstract

In this paper, we apply the probabilistic symbolic model checker PRISM to the analysis of a biological system – the Platelet-Derived Growth Factor (PDGF) signaling pathway, demonstrating in detail how this pathway can be analyzed in PRISM. Moreover, we compare the results from verification and ODE simulation on the PDGF pathway and demonstrate by examples the influence of model structure, parameter values and pathway length on the two analysis methods.

An extended abstract appears in the proceedings of CompMod 2011 [1]. The first two authors made equal contributions to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yuan, Q., Pang, J., Mauw, S., Trairatphisan, P., Wiesinger, M., Sauter, T.: A study of the PDGF signaling pathway with PRISM. In: Proc. 3rd Workshop on Computational Models for Cell Processes. EPTCS, vol. 67, pp. 65–81 (2011)

    Google Scholar 

  2. Regev, A., Shapiro, E.: Cellular abstractions: Cells as computation. Nature 419, 343 (2002)

    Article  Google Scholar 

  3. Bonzanni, N., Anton Feenstra, K., Fokkink, W., Krepska, E.: What Can Formal Methods Bring to Systems Biology? In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 16–22. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Fisher, J., Henzinger, T.A.: Executable cell biology. Nature Biotechnology 25(11), 1239–1249 (2007)

    Article  Google Scholar 

  5. Sadot, A., Fisher, J., Barak, D., Admanit, Y., Stern, M.J., Jane Albert Hubbard, E., Harel, D.: Toward verified biological models. IEEE/ACM Transactions on Computational Biology Bioinformatics 5(2), 223–234 (2008)

    Article  Google Scholar 

  6. Fisher, J., Piterman, N.: The executable pathway to biological networks. Briefings in Functional Genomics and Proteomics 9(1), 79–92 (2010)

    Google Scholar 

  7. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic Model Checking. In: Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Baier, C., Katoen, J.P.: Principles in Model Checking. MIT Press (2008)

    Google Scholar 

  9. Hart, S., Sharir, M., Pnueli, A.: Termination of probabilistic concurrent programs. ACM Transactions on Programming Languages and Systems 5(3), 356–380 (1983)

    Article  MATH  Google Scholar 

  10. Kwiatkowska, M.Z., Norman, G., Parker, D.: Quantitative Verification Techniques for Biological Processes. In: Algorithmic Bioprocesses, pp. 391–409. Springer (2009)

    Google Scholar 

  11. Kwiatkowska, M.Z., Norman, G., Parker, D.: Probabilistic Model Checking for Systems Biology. In: Symbolic Systems Biology, pp. 31–59. Jones and Bartlett (2010)

    Google Scholar 

  12. Aldridge, B.B., Haller, G., Sorger, P.K., Lauffenburger, D.A.: Direct lyapunov exponent analysis enables parametric study of transient signalling governing cell behaviour. Systems Biology 153(6), 425–432 (2006)

    Article  Google Scholar 

  13. Yu, J., Ustach, C., Kim, H.R.: Platelet-derived growth factor signaling and human cancer. Journal of Biochemistry and Molecular Biology 36(1), 49–59 (2003)

    Article  Google Scholar 

  14. Golub, T.R., Barker, G.F., Lovett, M., Gilliland, D.G.: Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell 77(2), 307–316 (1994)

    Article  Google Scholar 

  15. Anan, K., Morisaki, T., Katano, M., Ikubo, A., Kitsuki, H., Uchiyama, A., Kuroki, S., Tanaka, M., Torisu, M.: Vascular endothelial growth factor and platelet-derived growth factor are potential angiogenic and metastatic factors in human breast cancer. Surgery 119(3), 333–339 (1996)

    Article  Google Scholar 

  16. Cools, J., DeAngelo, D.J., Gotlib, J., Stover, E.H., Legare, R.D., Cortes, J., Kutok, J., Clark, J., Galinsky, I., Griffin, J.D., Cross, N.C., Tefferi, A., Malone, J., Alam, R., Schrier, S.L., Schmid, J., Rose, M., Vandenberghe, P., Verhoef, G., Boogaerts, M., Wlodarska, I., Kantarjian, H., Marynen, P., Coutre, S.E., Stone, R., Gilliland, D.G.: A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. The New England Journal of Medicine 348(13), 1201–1214 (2003)

    Article  Google Scholar 

  17. Miettinen, M., Lasota, J.: Gastrointestinal stromal tumors: Pathology and prognosis at different sites. Seminars in Diagnostic Pathology 23(2), 70–83 (2006)

    Article  Google Scholar 

  18. Calder, M., Vyshemirsky, V., Gilbert, D., Orton, R.: Analysis of Signalling Pathways Using Continuous Time Markov Chains. In: Priami, C., Plotkin, G. (eds.) Transactions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp. 44–67. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Kwiatkowska, M.Z., Norman, G., Parker, D.: Using probabilistic model checking in systems biology. SIGMETRICS Performance Evaluation Review 35, 14–21 (2008)

    Article  Google Scholar 

  20. Pronk, T., de Vink, E., Bosnacki, D., Breit, T.: Stochastic modeling of codon bias with PRISM. In: Proc. 3rd Workshop on Methods and Tools for Coordinating Concurrent, Distributed and Mobile Systems, Computer Science Department, University of Cyprus, Nicosia (2007)

    Google Scholar 

  21. Bošnački, D., Pronk, T.E., de Vink, E.P.: In Silico Modelling and Analysis of Ribosome Kinetics and aa-tRNA Competition. In: Priami, C., Back, R.-J., Petre, I. (eds.) Transactions on Computational Systems Biology XI. LNCS, vol. 5750, pp. 69–89. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  22. Heath, J., Kwiatkowska, M., Norman, G., Parker, D., Tymchyshyn, O.: Probabilistic model checking of complex biological pathways. Theoretical Computer Science 319(3), 239–257 (2008)

    Article  MathSciNet  Google Scholar 

  23. Owens, N.D.L., Timmis, J., Greensted, A.J., Tyrrell, A.M.: Modelling the Tunability of Early T Cell Signalling Events. In: Bentley, P.J., Lee, D., Jung, S. (eds.) ICARIS 2008. LNCS, vol. 5132, pp. 12–23. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  24. Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer, A., Zuliani, P.: A Bayesian Approach to Model Checking Biological Systems. In: Degano, P., Gorrieri, R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 218–234. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  25. Liò, P., Merelli, E., Paoletti, N.: Multiple verification in computational modeling of bone pathologies. In: Proc. 3rd International Workshop on Computational Models for Cell Processes. EPTCS, vol. 68, pp. 82–96 (2011)

    Google Scholar 

  26. Zhang, R., Shah, M.V., Yang, J., Nyland, S.B., Liu, X., Yun, J.K., Albert, R., Loughran, T.P.: Network model of survival signaling in large granular lymphocyte leukemia. Proceedings of the National Academy of Sciences of the United States of America 105(42), 16308–16313 (2008)

    Article  Google Scholar 

  27. Wang, C.C., Cirit, M., Haugh, J.M.: PI3K-dependent cross-talk interactions converge with Ras as quantifiable inputs integrated by Erk. Molecular Systems Biology 5, 246 (2009)

    Article  Google Scholar 

  28. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model checking continuous time markov chains. ACM Transactions on Computational Logic 1(1), 162–170 (2000)

    Article  MathSciNet  Google Scholar 

  29. Baier, C., Hermanns, H., Haverkort, B.R., Katoen, J.P.: Model-checking algorithms for continuous-time markov chains. IEEE Transactions on Software Engineering 29(6), 524–541 (2003)

    Article  Google Scholar 

  30. Krauss, G.: Biochemistry of Signal Transduction and Regulation. Wiley-VCH, Weinheim (2008)

    Google Scholar 

  31. Bhalla, U.: Understanding complex signaling networks through models and metaphor. Progress in Biophysics & Molecular Biology 81(1), 45–65 (2003)

    Article  Google Scholar 

  32. Heldin, C.H., Westermarkt, B., Wasteson, A.: Platelet-derived growth factor. Molecular and Celluar Endocrinology 39(3), 169–187 (1985)

    Article  Google Scholar 

  33. Tallquist, M., Kazlauskas, A.: PDGF signaling in cells and mice. Cytokine & Growth Factor Review 15(4), 205–213 (2004)

    Article  Google Scholar 

  34. Yokote, K., Hellman, U., Ekman, S., Saito, Y., Roennstrand, L., Saito, Y., Heldin, C.H., Mori, S.: Identification of Tyr-762 in the platelet-derived growth factor alpha-receptor as the binding site for Crk proteins. Oncogene 16(10), 1229–1239 (1998)

    Article  Google Scholar 

  35. Gutiérrez-Uzquiza, A., Arechederra, M., Molina, I., Banos, R., Maia, V., Benito, M., Guerrero, C., Porras, A.: C3G down-regulates p38 MAPK activity in response to stress by Rap-1 independent mechanisms: involvement in cell death. Cellualar Signalling 22(3), 533–542 (2010)

    Article  Google Scholar 

  36. Valgeirsdóttir, S., Paukku, K., Silvennoinen, O., Heldin, C.H., Claesson-Welsh, L.: Activation of Stat5 by platelet-derived growth factor (PDGF) is dependent on phosphorylation sites in PDGF beta-receptor juxtamembrane and kinase insert domains. Oncogene 16(4), 505–515 (1998)

    Article  Google Scholar 

  37. Joazeiro, C.A., Wing, S.S., Huang, H., Leverson, J.D., Hunter, T., Liu, Y.C.: The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 286(5438), 309–312 (1999)

    Article  Google Scholar 

  38. Hanahan, D., Weinberg, R.A.: Hallmarks of cancer: The next generation. Cell 144(5), 646–674 (2011)

    Article  Google Scholar 

  39. Yu, J., Gutkind, J.S., Mahadevan, D., Li, W., Meyers, K.A., Pierce, J.H., Heidaran, M.A.: Biological function of PDGF-induced PI-3 kinase activity: its role in alpha PDGF receptor-mediated mitogenic signaling. Journal of Cell Biology 127(2), 479–487 (1994)

    Article  Google Scholar 

  40. Bazenet, C.E., Gelderloos, J.A., Kazlauskas, A.: Phosphorylation of tyrosine 720 in the platelet-derived growth factor alpha receptor is required for binding of Grb2 and SHP-2 but not for activation of Ras or cell proliferation. Molecular and Cellular Biology 16(12), 6926–6936 (1996)

    Google Scholar 

  41. Reddi, A.L., Ying, G., Duan, L., Chen, G., Dimri, M., Douillard, P., Druker, B.J., Naramura, M., Band, V., Band, H.: Binding of Cbl to a phospholipase Cgamma1-docking site on platelet-derived growth factor receptor beta provides a dual mechanism of negative regulation. Journal of Biological Chemistry 282(40), 29336–293347 (2007)

    Article  Google Scholar 

  42. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  43. Witt, J., Barisic, S., Schumann, E., Allgöwer, F., Sawodny, O., Sauter, T., Kulms, D.: Mechanism of PP2A-mediated IKKβ dephosphorylation: a systems biological approach. BMC Systems Biology 3, 71 (2009)

    Article  Google Scholar 

  44. Schmidt, H., Jirstrand, M.: Systems Biology Toolbox for MATLAB: a computational platform for research in systems biology. Bioinformatics 22(4), 514–515 (2006)

    Article  Google Scholar 

  45. Saltelli, A., Tarantola, S., Chan, K.P.S.: A quantitative model-independent method for global sensitivity analysis of model output. Technometrics 41(1), 39–56 (1999)

    Article  Google Scholar 

  46. Davies, S., Reddy, H., Caivano, M., Cohen, P.: Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochemical Journal 351(pt. 1), 95–105 (2000)

    Article  Google Scholar 

  47. Stewart, W.J.: Introduction to the Numerical Solution of Markov Chains. Princeton University Press (1994)

    Google Scholar 

  48. Tenenbaum, M., Pollard, H.: Ordinary Differential Equations: An Elementary Textbook for Students of Mathematics, Engineering, and the Science. Harper & Row (1985)

    Google Scholar 

  49. Kwiatkowska, M.Z., Norman, G., Parker, D., Tymchyshyn, O., Heath, J., Gaffney, E.: Simulation and verification for computational modelling of signalling pathways. In: Proc. 38th Winter Simulation Conference, pp. 1666–1674 (2006)

    Google Scholar 

  50. Han, T., Katoen, J.P., Mereacre, A.: Approximate parameter synthesis for probabilistic time-bounded reachability. In: Proc. 29 IEEE Real-Time Systems Symposium, pp. 173–182. IEEE Computer Society (2008)

    Google Scholar 

  51. Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic Reachability for Parametric Markov Models. In: Păsăreanu, C.S. (ed.) CAV 2011. LNCS, vol. 5578, pp. 88–106. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  52. Andreychenko, A., Mikeev, L., Spieler, D., Wolf, V.: Parameter Identification for Markov Models of Biochemical Reactions. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 83–98. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yuan, Q., Trairatphisan, P., Pang, J., Mauw, S., Wiesinger, M., Sauter, T. (2012). Probabilistic Model Checking of the PDGF Signaling Pathway. In: Priami, C., Petre, I., de Vink, E. (eds) Transactions on Computational Systems Biology XIV. Lecture Notes in Computer Science(), vol 7625. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35524-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35524-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35523-3

  • Online ISBN: 978-3-642-35524-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics