Abstract
Spatio-temporal data analysis has important applications in transportation management, urban planning and other fields. However, spatio-temporal data are often highly dimensional, overly large and contain spatial and temporal attributes, which pose special challenges for analysts. In this paper, we propose a new visual aided mining approach, Visual Fingerprinting (VF) for extremely large-scale spatio-temporal feature extraction and analysis. It adopts a visual analytics approach for spatio-temporal data analysis that can generate fingerprints for temporal exploration while preserving the spatial distribution in a region or on a road. Fingerprinting has been proposed to display temporal changes in spatial distributions; for example fingerprints for a region grid can well display temporal changes in the traffic situations of significant spots of a city. These fingerprints integrate important statistical and historical information related to traffic and can be conveniently embedded into urban maps. The sophisticated design of the visualization can better reveal frequent or periodic patterns for temporal attributes. We have tested our approach with real-life vehicle data collected from thousands of taxis and some interesting findings about traffic patterns have been obtained. The experiments validate our methods and demonstrate that our approach can be used for analyzing vehicle trajectories on road networks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alvares, L.O., Fern, V.B.J.A., Macedo, E.D., Moelans, B., Spaccapietra, S.: Dynamic modeling of trajectory patterns using data mining and reverse engineering. In: 26th International Conference on Conceptual Modeling (2007)
Andrienko, G., Andrienko, N.: Spatio-temporal aggregation for visual analysis of movements. In: IEEE Symposium on Visual Analytics Science and Technology, VAST 2008, pp. 51–58 ( October 2008)
Andrienko, G., Andrienko, N.: A general framework for using aggregation in visual exploration of movement data. The Cartographic Journal 47(1), 22–40 (2010)
Andrienko, G., Andrienko, N., Bremm, S., Schreck, T., Von Landesberger, T., Bak, P., Keim, D.A.: Space-in-time and time-in-space self-organizing maps for exploring spatiotemporal patterns. Computer Graphics Forum 29(3), 913–922 (2010)
Andrienko, G., Andrienko, N., Dykes, J., Fabrikant, S.I., Wachowicz, M.: Geovisualization of dynamics, movement and change: key issues and developing approaches in visualization research. Information Visualization 7(3-4), 173–180 (2008)
Auria, M.D., Nanni, M., Pedreschi, D.: Time-focused density-based clustering of trajectories of moving objects. Journal of Intelligent Information Systems 27(3), 267–289 (2006)
Compieta, P., Di Martino, S., Bertolotto, M., Ferrucci, F., Kechadi, T.: Exploratory spatio-temporal data mining and visualization. Journal of Visual Languages Computing 18(3), 255–279 (2007)
Crnovrsanin, T., Muelder, C., Correa, C., Ma, K.-L.: Proximity-based visualization of movement trace data, pp. 11–18 (2009)
Giannotti, F., Nanni, M., Pinelli, F., Pedreschi, D.: Trajectory pattern mining. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2007, pp. 330–339. ACM (2007)
Guo, H., Wang, Z.: Tripvista: Triple perspective visual trajectory analytics and its application on microscopic traffic data at a road intersection. In: IEEE Symposium on Pacific Visualization, PacificVis 2010 (2010)
Hurter, C., Tissoires, B., Conversy, S.: FromDaDy: spreading aircraft trajectories across views to support iterative queries. IEEE Transactions on Visualization and Computer Graphics 15(6), 1017–1024 (2009)
Kapler, T., Wright, W.: GeoTime Information Visualization. Information Visualization, 1–8 (2004)
Liu, S., Liu, C., Luo, Q., Ni, L.M., Qu, H.: A visual analytics system for metropolitan transportation. In: Proceedings of the 19th SIGSPATIAL International Conference on Advances in Geographic Information Systems (GIS 2011), pp. 477–480 (2011)
Liu, S., Liu, C., Luo, Q., Ni, L.M., Ramayya, K.: Calibrating large scale vehicle trajectory data. In: Proceedings of the 13th IEEE International Conference on Mobile Data Management (IEEE MDM 2012) (July 2012)
Liu, S., Liu, Y., Ni, L.M., Fan, J., Li, M.: Towards mobility-based clustering. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2010, pp. 919–928. ACM (2010)
Liu, S., Luo, Y., Ni, L.M.: Calibration of vehicle trajectory. Technical Report (2010)
Palma, A.T., Bogorny, V., Kuijpers, B., Alvares, L.O.: A clustering-based approach for discovering interesting places in trajectories. In: Proceedings of the 2008 ACM Symposium on Applied Computing, SAC 2008, pp. 863–868. ACM (2008)
Pelekis, N., Kopanakis, I., Marketos, G., Ntoutsi, I., Andrienko, G., Theodoridis, Y.: Similarity search in trajectory databases. In: 14th International Symposium on Temporal Representation and Reasoning, TIME 2007, pp. 129–140 (2007)
Spaccapietra, S., Parent, C., Damiani, M., Demacedo, J., Porto, F., Vangenot, C.: A conceptual view on trajectories. Data & Knowledge Engineering 65(1), 126–146 (2008)
Vlachos, M., Kollios, G., Gunopulos, D.: Discovering similar multidimensional trajectories. In: Proceedings of 18th International Conference on Data Engineering, ICDE 2002, pp. 673–684. IEEE (2002)
Willems, N., Van De Wetering, H., Van Wijk, J.J.: Visualization of vessel movements. Computer Graphics Forum 28(3), 959–966 (2009)
Yuan, J., Zheng, Y., Zhang, C., Xie, W., Xie, X., Sun, G., Huang, Y.: T-drive: driving directions based on taxi trajectories. In: Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems (GIS 2010), pp. 99–108. ACM (2010)
Zhao, J., Forer, P., Harvey, A.S.: Activities, ringmaps and geovisualization of large human movement fields. Information Visualization 7(3-4), 198–209 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pu, J., Liu, S., Qu, H., Ni, L. (2012). Visual Fingerprinting: A New Visual Mining Approach for Large-Scale Spatio-temporal Evolving Data. In: Zhou, S., Zhang, S., Karypis, G. (eds) Advanced Data Mining and Applications. ADMA 2012. Lecture Notes in Computer Science(), vol 7713. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35527-1_42
Download citation
DOI: https://doi.org/10.1007/978-3-642-35527-1_42
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-35526-4
Online ISBN: 978-3-642-35527-1
eBook Packages: Computer ScienceComputer Science (R0)