Skip to main content

An Improved Memetic Algorithm for the Antibandwidth Problem

  • Conference paper
Artificial Evolution (EA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7401))

Abstract

This paper presents an Improved Memetic Algorithm (IMA) designed to compute near-optimal solutions for the antibandwidth problem. It incorporates two distinguishing features: an efficient heuristic to generate a good quality initial population and a local search operator based on a Stochastic Hill Climbing algorithm. The most suitable combination of parameter values for IMA is determined by employing a tunning methodology based on Combinatorial Interaction Testing. The performance of the fine-tunned IMA algorithm is investigated through extensive experimentation over well known benchmarks and compared with an existing state-of-the-art Memetic Algorithm, showing that IMA consistently improves the previous best-known results.

This research work was partially funded by the following projects: CONACyT 99276, Algoritmos para la Canonización de Covering Arrays; 51623 Fondo Mixto CONACyT y Gobierno del Estado de Tamaulipas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Leung, J., Vornberger, O., Witthoff, J.: On some variants of the bandwidth minimization problem. SIAM Journal on Computing 13(3), 650–667 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Yixun, L., Jinjiang, Y.: The dual bandwidth problem for graphs. Journal of Zhengzhou University 35(1), 1–5 (2003)

    MathSciNet  MATH  Google Scholar 

  3. Hale, W.K.: Frequency assignment: Theory and applications. Proceedings of the IEEE 68(12), 1497–1514 (1980)

    Article  Google Scholar 

  4. Roberts, F.S.: New directions in graph theory. Annals of Discrete Mathematics 55, 13–44 (1993)

    Article  Google Scholar 

  5. Cappanera, P.: A survey on obnoxious facility location problems. Technical report, Uni. di Pisa (1999)

    Google Scholar 

  6. Burkard, R.E., Donnani, H., Lin, Y., Rote, G.: The obnoxious center problem on a tree. SIAM Journal on Computing 14(4), 498–509 (2001)

    MATH  Google Scholar 

  7. Cohen, D.M., Dalal, S.R., Parelius, J., Patton, G.C.: The combinatorial design approach to automatic test generation. IEEE Software 13(5), 83–88 (1996)

    Article  Google Scholar 

  8. Miller, Z., Pritikin, D.: On the separation number of a graph. Networks 19, 651–666 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Yao, W., Ju, Z., Xiaoxu, L.: Dual bandwidth of some special trees. Journal of Zhengzhou University Natural Science Edition 35, 16–19 (2003)

    Google Scholar 

  10. Calamoneri, T., Missini, A., Török, L., Vrt’o, I.: Antibandwidth of complete k-ary trees. Electronic Notes in Discrete Mathematics 24, 259–266 (2006)

    Article  Google Scholar 

  11. Török, L.: Antibandwidth of three-dimensional meshes. Electronic Notes in Discrete Mathematics 28, 161–167 (2007)

    Article  Google Scholar 

  12. Raspaud, A., Schröder, H., Sykora, O., Török, L., Vrt’o, I.: Antibandwidth and cyclic antibandwidth of meshes and hypercubes. Discrete Mathematics 309(11), 3541–3552 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bansal, R., Srivastava, K.: Memetic algorithm for the antibandwidth maximization problem. Journal of Heuristics 17(1), 39–60 (2011)

    Article  MATH  Google Scholar 

  14. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing, 1st edn. Springer (2007)

    Google Scholar 

  15. Davis, L.: Applying adaptive algorithms to epistatic domains. In: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 162–164. Morgan Kaufmann (1985)

    Google Scholar 

  16. Goldberg, D.E., Lingle, R.: Alleles, loci, and the travelling salesman problem. In: Proceedings of the 1st International Conference on Genetic Algorithms and their Applications, pp. 154–159. Lawrence Erlbaum Associates (1985)

    Google Scholar 

  17. Oliver, I.M., Smith, D.J., Holland, J.R.C.: A study of permutation crossover operators on the travelling salesman problem. In: Proceedings of the 2nd International Conference on Genetic Algorithms and their Applications, pp. 224–230. Lawrence Erlbaum Associates (1987)

    Google Scholar 

  18. Freisleben, B., Merz, P.: A genetic local search algorithm for solving symmetric and asymmetric traveling salesman problems. In: Proceedings of IEEE International Conference on Evolutionary Computation, pp. 616–621. IEEE Press (1996)

    Google Scholar 

  19. Adenso-Diaz, B., Laguna, M.: Fine-tuning of algorithms using fractional experimental design and local search. Operations Research 54(1), 99–114 (2006)

    Article  MATH  Google Scholar 

  20. de Landgraaf, W.A., Eiben, A.E., Nannen, V.: Parameter calibration using meta-algorithms. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 71–78. IEEE Press (2007)

    Google Scholar 

  21. Gunawan, A., Lau, H.C., Lindawati: Fine-Tuning Algorithm Parameters Using the Design of Experiments Approach. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 278–292. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  22. Gonzalez-Hernandez, L., Torres-Jimenez, J.: MiTS: A New Approach of Tabu Search for Constructing Mixed Covering Arrays. In: Sidorov, G., Hernández Aguirre, A., Reyes García, C.A. (eds.) MICAI 2010, Part II. LNCS (LNAI), vol. 6438, pp. 382–393. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  23. Colbourn, C.J.: Combinatorial aspects of covering arrays. Le Matematiche 58, 121–167 (2004)

    MathSciNet  Google Scholar 

  24. Rodriguez-Tello, E., Torres-Jimenez, J.: Memetic Algorithms for Constructing Binary Covering Arrays of Strength Three. In: Collet, P., Monmarché, N., Legrand, P., Schoenauer, M., Lutton, E. (eds.) EA 2009. LNCS, vol. 5975, pp. 86–97. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  25. Moscato, P., Berretta, R., Cotta, C.: Memetic algorithms. In: Wiley Encyclopedia of Operations Research and Management Science. John Wiley & Sons, Inc. (2011)

    Google Scholar 

  26. Neri, F., Cotta, C., Moscato, P. (eds.): Handbook of Memetic Algorithms. SCI, vol. 379. Springer, Heidelberg (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rodriguez-Tello, E., Betancourt, L.C. (2012). An Improved Memetic Algorithm for the Antibandwidth Problem. In: Hao, JK., Legrand, P., Collet, P., Monmarché, N., Lutton, E., Schoenauer, M. (eds) Artificial Evolution. EA 2011. Lecture Notes in Computer Science, vol 7401. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35533-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35533-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35532-5

  • Online ISBN: 978-3-642-35533-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics