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Abstract

Over the last decade, PageRank has gained importance in a wide range of applications and
domains, ever since it first proved to be effective in determining node importance in large graphs
(and was a pioneering idea behind Google’s search engine). In distributed computing alone,
PageRank vector, or more generally random walk based quantities have been used for several
different applications ranging from determining important nodes, load balancing, search, and
identifying connectivity structures. Surprisingly, however, there has been little work towards
designing provably efficient fully-distributed algorithms for computing PageRank. The dif-
ficulty is that traditional matrix-vector multiplication style iterative methods may not always
adapt well to the distributed setting owing to communication bandwidth restrictions and con-
vergence rates.

In this paper, we present fast random walk-based distributed algorithms for computing
PageRanks in general graphs and prove strong bounds on the round complexity. We first present
a distributed algorithm that takes O

(
log n/ε

)
rounds with high probability on any graph (di-

rected or undirected), where n is the network size and ε is the reset probability used in the
PageRank computation (typically ε is a fixed constant). We then present a faster algorithm that
takes O

(√
log n/ε

)
rounds in undirected graphs. Both of the above algorithms are scalable, as

each node sends only small (polylog n) number of bits over each edge per round. To the best of
our knowledge, these are the first fully distributed algorithms for computing PageRank vector
with provably efficient running time.
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1 Introduction
In the last decade, PageRank has emerged as a very powerful measure of relative importance of
nodes in a network. The term PageRank was first introduced in [7, 16] where it was used to rank
the importance of webpages on the Web. Since then, PageRank has found a wide range of appli-
cations in a variety of domains within computer science such as distributed networks, data mining,
Web algorithms, and distributed computing [5, 6, 8, 14]. Since PageRank vector or PageRanks
is essentially the steady state distribution or the top eigenvector of the Laplacian corresponding
to a slightly modified random walk process, it is an easily defined quantity. However, the power
and applicability of PageRank arises from its basic intuition of being a way to naturally identify
“important” nodes, or in certain cases, similarity between nodes.

While there has been recent work on performing random walks efficiently in distributed net-
works [4, 9], surprisingly, little provable results are known towards efficient distributed computation
of PageRanks. This is perhaps because the traditional method of computing PageRanks is to apply
iterative methods i.e., do matrix-vector multiplications till (near)-convergence. Since such tech-
niques may not adapt well in certain settings, when dealing with a global network with only local
views (as is common in distributed networks such as Peer-to-Peer (P2P) networks), and particularly,
very large networks, it becomes crucial to design far more efficient techniques. Therefore, PageR-
ank computation using Monte Carlo methods is more appropriate in a distributed model where only
messages of limited size are permitted to be sent over each edge in each round.

To elaborate, a naive way to compute PageRank of nodes in a distributed network is simply scal-
ing iterative PageRank algorithms to distributed environment. But this is firstly not trivial, and sec-
ondly expensive even if doable. As each iteration step needs computation results of previous steps,
there needs to be continuous synchronization and several messages may need to be exchanged.
Further, the convergence time may be large. It is important to design efficient and localized dis-
tributed algorithms as communication overhead is more important than CPU and memory usage in
distributed page ranking. We take all these concerns into consideration and design highly efficient
fully decentralized algorithms for computing the PageRank vector in distributed networks.

Our Contributions. In this paper, to the best of our knowledge, we present the first provably
efficient fully decentralized algorithms for estimating PageRanks under a variety of settings. Our
algorithms are scalable, since each node sends only polylog n bits per round. Specifically, our
contributions are as follows:

• We present an algorithm, BASIC-PAGERANK-ALGORITHM (cf. Algorithm 1), that computes
PageRanks accurately in O

(
logn
ε

)
rounds with high probability1, where n is the number of

nodes in the network and ε is the random reset probability in the PageRank random walk
[2, 4, 9]. Our algorithm works for any arbitrary network (directed as well as undirected).

• We present an improved algorithm, called as IMPROVED-PAGERANK-ALGORITHM (cf. Al-
gorithm 2), that computes PageRanks accurately in undirected graphs and terminates with
high probability in O

(√
logn
ε

)
rounds. We note that though PageRank is usually applied for

directed graphs (e.g., for the World Wide Web), it is sometimes also applied in connection
with undirected graphs as well [1, 12, 13, 17, 20] and is non-trivial to compute (cf. Section

1Throughout, “with high probability (w.h.p.)” means with probability at least 1 − 1/nc, where n is the number of
nodes in the network and c > 1 is a suitably chosen constant.

2



2.2). In particular, it can be applied for distributed networks when modeled as undirected
graphs (as is typically the case, e.g., in P2P network models).

We note that the IMPROVED-PAGERANK-ALGORITHM requires only O(log3 n) bits to be sent per
round per edge, and the BASIC-PAGERANK-ALGORITHM requires only O(log n) bits per round
per edge.

2 Background and Related Work
2.1 Distributed Computing Model

We model the communication network as an unweighted, connected n-node graph G = (V,E).
Each node has limited initial knowledge. Specifically, we assume that each node is associated with
a distinct identity number (e.g., its IP address). At the beginning of the computation, each node v
accepts as input its own identity number which is of length O(log n) bits and the identity numbers
of its neighbors in G. The node may also accept some additional inputs as specified by the problem
at hand e.g., the number of nodes in the network. A node v can communicate with any node u if
v knows the id of u.2 Initially, each node knows only the ids of its neighbors in G. We assume
that the communication occurs in synchronous rounds, i.e., nodes run at the same processing speed
and any message that is sent by some node v to its neighbors in some round r will be received by
the end of round r. In each round, each node is allowed to send a message of size polylog n bits
through each communication link (this applies to both communication via an edge in the network
as well as direct communication).

There are several measures of efficiency of distributed algorithms; here we will focus on the
running time, i.e. the number of rounds of distributed communication. Note that the computation
that is performed by the nodes locally is free, i.e., it does not affect the number of rounds.

2.2 PageRank

We formally define the PageRankof a graph G = (V,E). Let ε be a small constant which is fixed
(ε is called the reset probability, i.e., with probability ε, the random walk starts from a node chosen
uniformly at random among all nodes in the network). The PageRank vector of a graph (e.g., see
[2, 4, 5, 9]) is the stationary distribution vector π of the following special type of random walk: at
each step of the random walk, with probability ε the walk starts from a randomly chosen node and
with remaining probability 1 − ε, the walk follows a randomly chosen outgoing (neighbor) edge
from the current node and moves to that neighbor.3 Therefore the PageRank transition matrix on
the state space (or vertex set) V can be written as

P =
( ε
n

)
J +

(
1− ε

)
Q (1)

where J is the matrix with all entries 1 and Q is the transition matrix of a simple random walk on
G defined as Qij = 1/k, if j is one of the k > 0 outgoing links of i, otherwise 0. Computing
the PageRanks and its variants efficiently in various computation models has been of tremendous
research interest in both academia and industry. For a detailed survey of PageRanksee e.g., [5, 14].

2This is a typical assumption in the context of P2P and overlay networks, where a node can establish communication
with another node if it knows the other node’s IP address. We sometimes call this direct communication, especially
when the two nodes are not neighbors inG. Note that our algorithm of Section 3 uses no direct communication between
non-neighbors in G.

3We sometime use the terminology “PageRank random walk” for this special type of random walk process.
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We note that PageRank is well-defined in both directed and undirected graphs. Note that it is
difficult to compute the PageRank distribution (exactly) analytically (and no analytical formulas
are known for general directed graphs) and hence various computational methods have been used
to estimate the PageRank distribution. In fact, this is true even for undirected graphs as well [12].

There are mainly two broad approaches to computing PageRanks (e.g., see [3]). One is to using
linear algebraic techniques, (e.g., the Power Iteration [16]) and the other approach is Monte Carlo
[2]. In the Monte Carlo method, the basic idea is to approximate PageRanks by directly simulating
the corresponding random walk and then estimating the stationary distribution with the performed
walk’s distribution. In [2] Avrachenkov et al., proposed the following Monte Carlo method for
PageRankapproximation: Perform K random walks (according to the PageRanktransition proba-
bility) starting from each node v of the graph G. For each walk, terminate the walk with its first
reset instead of moving to a random node. It is shown that the frequencies of visits of all these
random walks to different nodes will approximate the PageRanks. Our distributed algorithms are
based on the above method.

Monte Carlo methods are efficient, light weight and highly scalable [2]. Monte Carlo methods
have been useful in designing algorithms for PageRank and its variants in important computational
models like data streaming [9] and MapReduce [3]. The works in [18, 19] study distributed imple-
mentation of PageRankin peer-to-peer networks but use iteration methods.

3 A Distributed Algorithm for PageRank
We present a Monte Carlo based distributed algorithm for computing PageRank distribution of a
network [2]. The main idea of our algorithm (formal pseudocode is given in Algorithm 1) is as
follows. Perform K (K will be fixed appropriately later) random walks starting from each node
of the network in parallel. In each round, each random walk independently goes to a random
(outgoing) neighbor with probability 1− ε and with the remaining probability (i.e., ε) terminates in
the current node. Henceforth, we call such a random walk a ‘PageRank random walk’. In [2], this
random walk process is shown to be equivalent to one based on the PageRank transition matrix P ,
defined in Section 2.2. It is easy to see that picking each node as starting point for the same number
of times (i.e., restarting walks according to the uniform distribution) accounts for the (ε/n)J term
in Equation 1; and between any two restarts, we just have a simple random walk that terminates
with probability ε in each step — which accounts for the (1 − ε)Q term. Since ε is the probability
of termination of a walk in each round, the expected length of every walk is 1/ε and the length will
be at most O(log n/ε) with high probability. Let every node v count the number of visits (say, ζv)
of all the walks that go through it. Then, after termination of all walks in the network, each node
v computes (estimates) PageRank πv as π̃v = ζvε

nK
. Notice that nK

ε
is the (expected) total number

of visits over all nodes of all the nK walks. The above idea of counting the number of visits is a
standard technique to approximate PageRanks (see e.g., [2, 4]). We want to note that our algorithm
in this section does not require any direct communication between non-neighbors.

We show in the next section that the above algorithm computes PageRank vector π accurately
(with high probability) for an appropriate value of K. The main technical challenge in implement-
ing the above method is that performing many walks from each node in parallel can create a lot
of congestion. Our algorithm uses a crucial idea to overcome the congestion. We show that (cf.
Lemma 3.2) that there will be no congestion in the network even if we start a polynomial number of
random walks from every node in parallel. The main idea is based on the Markovian (memoryless)
properties of the random walks and the process that terminates the random walks. To calculate
how many walks move from node i to node j, node i only needs to know the number of walks that
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reached it. It does not need to know the sources of these walks or the transitions that they took be-
fore reaching node i. Thus it is enough to send the count of the number of walks that pass through a
node. The algorithm runs till all the walks are terminated which is at most O(log n/ε) rounds with
high probability. Then every node v outputs PageRank as the ratio between the number of visits
(denoted by ζv) to it and the total number of visits over all nodes of all the walks

(
nK
ε

)
. We show

that our algorithm computes approximate PageRanks in O(log n/ε) rounds with high probability
(cf. Theorem 3.3).

Algorithm 1 BASIC-PAGERANK-ALGORITHM

Input (for every node): Number of nodes n and reset probability ε.
Output: Approximate PageRank of each node.
[Each node v starts K = c log n walks, where c = 2

δ′ε
and δ′ is defined in Section 3.2. All walks

keep moving in parallel until they terminate. The termination probability of each walk is ε,
so the expected length of each walk is 1/ε.]

1: Each node v maintains a count variable “couponCountv” corresponding to number of random
walk coupons held by v. Initially, couponCountv = K for starting K random walks.

2: Each node v also maintains a counter ζv for counting the number visits of random walks to it.
Set ζv = K.

3: for round i = 1, 2, . . . , B log n/ε do //[for sufficiently large constant B]
4: Each node v holding at least one alive coupon (i.e., couponCountv 6= 0) does the following

in parallel:
5: For every neighbor u of v, set T uv = 0 // [T uv is the number of random walks moving

from v to u in round i]
6: for j = 1, 2, . . . , couponCountv do
7: With probability 1− ε, pick a uniformly random outgoing neighbor u
8: T uv := T uv + 1
9: end for

10: Send the coupon counter number T uv to the respective outgoing neighbors u.
11: Each node u computes: ζu = ζu +

∑
v∈N(u) T

u
v . //[the quantity

∑
v∈N(u) T

u
v is the

total number of visits of random walks to u in i-th round (from its neighbors)]
12: Each node u update the count variable couponCountu =

∑
v∈N(u) T

u
v

13: end for
14: Each node v outputs its PageRank as ζvε

cn logn
.

3.1 Analysis

Our algorithm computes the PageRank of each node v as π̃v = ζvε
nK

and we say that π̃v approximates
original PageRank πv. We first focus on the correctness of our approach and then analyze the
running time.

3.2 Correctness of PageRank Approximation

The correctness of the above approximation follows directly from the main result of [2] (see Algo-
rithm 4 and Theorem 1) and also from [4] (Theorem 1). In particular, it is mentioned in [2, 4] that
the approximate PageRankvalue is quite good even for K = 1. It is easy to see that the expected
value of π̃v is πv (formal proof is given in [2]). Now it follows from the Theorem 1 in [4] that, π̃v
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is sharply concentrated around its expectation πv. We included the proof of the theorem below for
the sake of completeness.

Theorem 3.1 (Theorem 1 in [4]). Pr
[
| π̃v − πv |≥ δπv

]
≤ e−nKπvδ

′
, where δ′ is a constant

depending on ε, the reset probability and δ.

Proof. For simplicity we first show the result assuming K = 1. For general value of K, it will
follow in the similar way. Fix an arbitrary node v. Define Xu to be ε times the number of visits
to v in the walk started at u, Yu to be the length of this walk, Wu = εYu, and xu = E[Xu]. Then,
Xu’s are independent, π̃v =

∑
uXu

n
and hence πv =

∑
u xu
n

, 0 ≤ Xu ≤ Wu, and E[Wu] = 1. Then it
follows easily that,

E
[
etXu

]
≤ xuE

[
etWu

]
+ 1− xu [From the definition of expectation]

= xu
(
E
[
etWu

]
− 1
)

+ 1

≤ e
−xu

(
1−E
[
etWu

])
[Since 1 + y ≤ ey for any y]

Thus,

Pr
[
π̃v ≥ (1 + δ)πv

]
≤ E[etnπ̃v ]

etn(1+δ)πv
[Markov’s inequality]

=
E
[
et
∑

uXu
]

etn(1+δ)πv
=

∏
uE[etXu ]

etn(1+δ)πv
≤
∏

u e
−xu(1−E[etWu ])

etn(1+δ)πv

=
e−(

∑
u xu(1−E[etWu ]))

etn(1+δ)πv
=
e−nπv(1−E[etW ])

etn(1+δ)πv

= e−nπv(1+t(1+δ)−E[etW ])

≤ e−nπvδ
′

where W = εY is a random variable with Y having geometric distribution with parameter ε, and
δ′ = 1 + t(1 + δ) − E[etW ] is a constant depending on δ and ε, and can be found by optimization
over t.

The proof for the other direction Pr[π̃v ≤ (1− δ)πv] is similar.

From the above bound (cf. Theorem 3.1), we see that for K = 2 logn
δ′nπmin

, Pr[| π̃v − πv |≥
δπv] ≤ n−2 for any v, where πmin is minimal PageRank. Using union bound, it follows that there
exist a node v such that Pr[| π̃v − πv |≥ δπv] is at most |V |n−2 = 1/n. Hence, for all nodes
v, | π̃v − πv |≤ δπv with probability at least 1 − 1/n, i.e., with high probability. This implies
that we get a δ-approximation of the PageRank vector with high probability for K = 2 logn

δ′nπmin
.

Note that δ can be arbitrary. Since the PageRankof any node is at least ε/n (i.e., the minimal
PageRankvalue, πmin ≥ ε/n), so it gives K = 2 logn

δ′ε
. For simplicity we define that c = 2

δ′ε
, which

is constant assuming δ (and hence δ′) and ε are constant. Therefore, it is enough if we perform
c log n PageRankrandom walks from each node. We note that while this value of K is sufficient to
guarantee a constant approximation of the PageRanks, our algorithm permits a larger value of K,
allowing for tighter approximation with the same running time (follows from Lemma 3.2 below).
Now we focus on the running time of our algorithm.

6



3.3 Time Complexity

From the above section we see that our algorithm is able to compute the PageRank vector π in
O(log n/ε) rounds with high probability if we can perform c log n walks from each node in parallel
without any congestion. The lemma below guarantees that there will be no congestion even if we
do a polynomial number of walks in parallel.

Lemma 3.2. The algorithm can be implemented such that the message size is at most O(log n) per
each edge in every round.

Proof. It follows from our algorithm that each node only needs to count the number of visits of ran-
dom walks to itself. Since the total number of random walk coupons in the network is polynomially
bounded, O(log n) bits suffice.

Theorem 3.3. The algorithm BASIC-PAGERANK-ALGORITHM (cf. Algorithm 1) computes a δ-
approximation of the PageRanks in O

(
logn
ε

)
rounds with high probability for any constant δ.

Proof. The algorithm outputs the RageRanks when all the walks terminate. Since the termination
probability is ε, in expectation after 1/ε steps, a walk terminates and with high probability (via a
Chernoff bound) the walk terminates inO(log n/ε) rounds. By the union bound [15], all walks (they
are only polynomially many) terminate in O(log n/ε) rounds with high probability. Since all the
walks are moving in parallel and there is no congestion (follows from the Lemma 3.2), all the walks
in the network terminate in O(log n/ε) rounds with high probability. Hence the algorithm is able
to output the PageRanks in O(log n/ε) rounds with high probability. The correctness of the PageR-
anks approximation follows from [2, 4] as discussed earlier in Section 3.2. The δ-approximation
guarantee is follows from the Theorem 3.1.

4 A Faster Distributed PageRankAlgorithm (for Undirected Graphs)
We present a faster algorithm for PageRanks computation in undirected graphs. Our algorithm’s
time complexity holds in the bandwidth restricted communication model, requires only O(log3 n)
bits to be sent over each link in each round.

We use a similar Monte Carlo method as described in Section 3 to estimate PageRanks. This
says that the PageRank of a node v is the ratio between the number of visits of PageRankrandom
walks to v itself and the sum of all the visits over all nodes in the network. In the previous section
(cf. Section 3) we show that in O(log n/ε) rounds, one can approximate RageRank accurately by
walking in a naive way in general graphs. We now outline how to speed up our previous algorithm
(cf. Algorithm 1) using an idea similar to the one used in [11]. In [11], it is shown how one can
perform a simple random walk in an undirected graph4 of length L in Õ

(√
LD
)

rounds w.h.p. (D
is the diameter of the network). The high level idea of their algorithm is to perform ‘many’ short
walks in parallel and later ‘stitch’ them to get the desired longer length walk. To apply this idea
in our case, we modify our approach accordingly as speeding up (many) PageRank random walks
is different from speeding up one simple random walk. We show that our improved algorithm (cf.
Algorithm 2) approximates PageRanks in O

(√
logn
ε

)
rounds.

4In each step, an edge is taken from the current node x with probability proportional to 1/d(x) where d(x) is the
degree of x.
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4.1 Description of Our Algorithm

In Section 3, we showed that by performing Θ(log n) walks (in particular we are performing c log n
walks, where c = 2

δ′ε
, δ′ is defined in Section 3.2) of length log n/ε from each node, one can estimate

the PageRankvector π accurately with high probability. In this section we focus on the problem of
performing efficiently Θ(n log n) walks (Θ(log n) from each node) each of length log n/ε and count
the number of visits of these walks to different nodes. Throughout, by “random walk” we mean the
“PageRank random walk” (cf. Section 3).

The main idea of our algorithm is to first perform ‘many’ short random walks in parallel and
then ‘stitch’ those short walks to get the longer walk of length log n/ε and subsequently ‘count’ the
number of visits of these random walks to different nodes. In particular, our algorithm runs in three
phases. In the first phase, each node v performs d(v)η (d(v) is degree of v) independent ‘short’
random walks of length λ in parallel. While value of the parameters η and λ will be fixed later in
the analysis, the assigned value will be O(log2 n/ε) and

√
log n respectively. This is done naively

by forwarding d(v)η ‘coupons’ having the ID of v from v (for each node v) for λ steps via random
walks. Besides the node’s ID, we also assign a coupon number “CouponID” to each coupon to keep
track the path followed by the random walk coupon. The intuition behind performing d(v)η short
walks is that the PageRanks of an undirected graph is proportional to the degree distribution [12].
Therefore we can easily bound the number of visits of random walks to any node v (cf. Lemma
4.1). At the end of this phase, if node u has k random walk coupons with the ID of a node v, then
u is a destination of k walks starting at v. Note that just after this phase, v has no knowledge of the
destinations of its own walks, but it can be known by direct communication from the destination
nodes. The destination nodes (at most d(v)η) have the ID of the source node v. So they can contact
the source node via direct communication. We show that this takes at most constant number of
rounds as only polylogarithmic number of bits are sent (since η will be at most O(log2 n/ε)). It is
shown that the first phase takes O

(
λ
ε

)
rounds (cf. Lemma 4.2).

In the second phase, starting at source node s, we ‘stitch’ some of the λ-length walks prepared
in first phase. Note that we do this for every node v in parallel as we want to perform Θ(log n) walks
from each node. The algorithm starts from s and samples one coupon distributed from s in Phase
1. In the end of Phase 1, each node v knows the destination node’s ID of its d(v)η short walks (or
coupons). When a coupon needs to be sampled, node s chooses a coupon number sequentially (in
order of the coupon IDs) from the unused set of coupons and informs the destination node (which
will be the next stitching point) holding the coupon C by direct communication, since s knows the
ID of the destination node at the end of the first phase. Let C be the sampled coupon and v be the
destination node of C. The source s then sends a ‘token’ to v and s deletes the coupon C so that
C will not be sampled again next time at s. This is because our goal is to produce independent
random walks of a given length, so naturally we do not reuse the same short walks, or in other
words, this will preserve randomness when we concatenate short walks. The process then repeats.
That is, the node v currently holding the token samples one of the coupons it distributed in Phase
1 and forwards the token to the destination of the sampled coupon, say u. Nodes v, u are called
‘connectors’ — they are the endpoints of the short walks that are stitched. A crucial observation is
that the walk of length λ used to distribute the corresponding coupons from s to v and from v to u
are independent random walks. Therefore, we can stitch them to get a random walk of length 2λ.
We therefore can generate a random walk of length 3λ, 4λ, . . . by repeating this process. We do this
until we have completed a length of at least

(
O(log n/ε) − λ

)
. Then, we complete the rest of the

walk by doing the naive random walk algorithm. Note that in the beginning of Phase 2, we first
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Algorithm 2 IMPROVED-PAGERANK-ALGORITHM

Input (for every node): Number of nodes n, reset probability ε and short walk length λ =
√

log n.
Output: Approximate PageRank of each node.

Phase 1: (Each node v performs d(v)η = O(d(v) log2 n/ε) random walks of length λ =
√

log n. At the
end of this phase, there are d(v) log2 n/ε (not necessarily distinct) nodes holding a ‘coupon’ containing
the ID of v.)

1: Each node v construct Bd(v) log2 n/ε messages C = 〈IDv, λ, CouponID〉. // [We will refer to these
messages created by node v as ‘coupons created by v’.]

2: for i = 1 to λ do
3: This is the i-th iteration. Each node v holding at least one coupon does the following in parallel:
4: for each couponC held by v do // [i.e., the coupons which received by v in the (i−1)-th iteration.]
5: Generate a random number r ∈ [0, 1].
6: if r < ε then
7: Terminate the coupon C and keep the coupon as then v itself is the destination.
8: else
9: pick a neighbor u uniformly at random for the coupon C and forward C to u.

10: end if
11: end for
{Note that an iteration could require more than 1 round, because of congestion}

12: end for
13: Each destination node sends its ID to the source node, as it has the source node’s ID now. // [destina-

tion nodes hold the short walk coupon(s)C and contact the source nodes through direct communication.]
Phase 2: (Stitch short walks by token forwarding. Stitch approximately Θ(

√
log n/ε) walks, each of

length
√

log n. Recall that each node wants to perform K = c log n long random walks, where c = 2
δ′ε

and δ′ is defined in Section 3.2)
1: Each node v generates K “tokens” 〈IDv, L〉, where L is a random integer value x chosen with prob-

ability ε(1 − ε)x−1 // [L is drawn from the geometric distribution with parameter ε i.e., from the
distribution of the lengths of random walks.]

2: for i = 1, 2, . . . , B1
√

log n/ε do //[for sufficiently large constant B1]
3: Each node v holding at least one token with L > 0 does the following in parallel:
4: For each token 〈IDv, L〉 with L ≥ λ, send 〈IDv, L− λ,CouponID〉 to u, where u is sampled using

a coupon of sequence number CouponID from the set of the coupons distributed by v in Phase 1, and
delete the token 〈IDv, L〉 // [v sends to u via the direct communication.]

5: For each such received message 〈IDv, L−λ,CouponID〉, node u memorizes (IDv, CouponID) and
creates a token 〈IDu, L− λ〉 // [Each node u memorizes it for backtracking in Phase 3.]

6: end for
7: For the remaining tokens 〈IDv, L〉 (whose L > 0), it holds that L < λ: for each of them walk naively

in parallel for another λ steps.
Phase 3: (Counting the number of visits of short walks to a node)

1: Each node w maintains a counter ζw to keep track of the number of visits of walks at w. ζw is initialized
to K.

2: Each node u which memorizes coupon IDs (IDv, CouponID) in Phase 2, does the following in parallel:
3: For each such coupon, starting from u trace all the short random walks in reverse.
4: Count the number of visits to any node w during this reverse tracing and add to ζw. Also count the visits

during ‘naively walking’ walks (Step 7 in Phase 2) and add it to ζw.
5: Each node v outputs its PageRank πv as ζvε

cn logn .
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check the length of survival of each walk and then stitch them accordingly. We show that Phase 2
finishes in O

(
logn
λε

+ λ
)

rounds (cf. Lemma 4.4).
In the third phase we count the number of visits of all the random walks to a node. As we have

discussed, we have to create many short walks of length λ from each node. Some short walks may
not be used to make the long walk of length log n/ε. We show a technique to count all the used
short walks’ visits to different nodes. We note that after completion of Phase 2, all the Θ(n log n)
long walks (Θ(log n) from each node) have been stitched. During stitching (i.e., in Phase 2), each
connector node (which is also the end point of the short walk) should remember the source node
and the CouponID of the short walk. Then start from each of the connector nodes and do a walk in
reverse direction (i.e., retrace the short walk backwards) to the respective source nodes in parallel.
During the reverse walk, simply count the visits to nodes. It is easy to see that this will take at most
O(λ

ε
) rounds, in accordance with Phase 1 (cf. Lemma 4.5). Now we analyze the running time of our

algorithm IMPROVED-PAGERANK-ALGORITHM. The compact pseudo code is given in Algorithm
2.

4.2 Analysis

First we are interested in the value of η i.e., the number of coupons (short walks) needed from each
node to successfully answer all the stitching requests. Notice that it is possible that d(v)η coupons
are not enough if η is not chosen suitably large: We might forward the token to some node v many
times in Phase 2 and all coupons distributed by v in the first phase may be deleted. In other words, v
is chosen as a connector node many times, and all its coupons have been exhausted. If this happens
then the stitching process cannot progress. To fix this problem, we use an easy upper bound of the
number of visits to any node v of a random walk of length ` in an undirected graph: d(v)` times.
Therefore each node v will be visited as a connector node at most O(d(v)`) times. This implies that
each node does not have to prepare too many short walks.

The following lemma bounds the number of visits to every node when we do Θ(log n) walks
from each node, each of length log n/ε (note that this is the maximum length of a long walk, w.h.p.).

Lemma 4.1. If each node performs Θ(log n) random walks of length log n/ε, then no node v is
visited more than O

(d(v) log2 n
ε

)
times with high probability.

Proof. We show the above bound on the number of visits still holds if each node v performs
Θ
(
d(v) log n

)
random walks of length log n/ε. Suppose each node v starts Θ

(
d(v) log n

)
sim-

ple random walks in parallel. We claim that after any given number of steps i, the expected number
of random walks at node v is still Θ

(
d(v) log n

)
. Consider the random walk’s transition probabil-

ity matrix A. Then, Ax = x holds for the stationary distribution x having value d(v)
2m

, where m
is the number of edges in the graph. Now the number of random walks started at any node v is
proportional to its stationary distribution, therefore, in expectation, the number of random walks at
any node after i steps remains the same. We show this is true with high probability using Chernoff
bound technique, since the random walks are independent. For each random walk coupon C, any
i = 1, 2, . . . , log n/ε, and any vertex v, we define W i

C(v) to be the random variable having value
1 if the random walk C is at v after ith step. Let W i(v) =

∑
C:random walk W

i
C(v), i.e., W i(v) is the

total number of random walks are at v after ith step. By Chernoff bound, for any vertex v and any i,

Pr
[
W i(v) ≥ 18d(v) log n

]
≤ 2−3d(v) logn ≤ n−3.

It follows that the probability that there exists an vertex v and an integer 1 ≤ i ≤ log n/ε such that
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W i(v) ≥ 18d(v) log n is at most |V (G)|(log n/ε)n−3 ≤ 1
n

since |V (G)| = n and log n/ε ≤ n.
Therefore, W i(v) ≤ 18d(v) log n for all v and for all i, with high probability.

Now, if each node starts Θ(log n) independent random walks that terminate with probability ε
in each step, the number of random walks to any node v is dominated from above by Θ

(
d(v) log n

)
.

This is because there will be at most n log n random walk coupons in the network in each step.
Therefore, the total number of visits by all random walks to any node v is bounded byO

(
d(v) log2 n/ε

)
w.h.p., since there are total of log n/ε steps.

It is now clear from the above lemma (cf. Lemma 4.1) that η = O
(

log2 n/ε
)

i.e., each node v
has to prepare O

(
d(v) log2 n/ε

)
short walks of length λ in Phase 1. Now we show the running time

of our algorithm (cf. Algorithm 2) using the following lemmas.

Lemma 4.2. Phase 1 finishes in O
(
λ
ε

)
rounds.

Proof. It is known from Lemma 4.1 that in Phase 1, each node v performs O
(
d(v) log2 n/ε

)
walks

of length λ. Assume that initially each node v starts with d(v) log2 n/ε coupons (or messages) and
each coupon takes a random walk according to the PageRanktransition probability. Now, in the
similar way we showed in Lemma 4.1 that after any given number of steps j (1 ≤ j ≤ λ), the
expected number of coupons at any node v is d(v) log2 n/ε. Therefore, in expectation the number
of messages, say X , that want to go through an edge in any round is at most 2 log2 n/ε (from the
two end points of the edge). This is because the number of messages, the edge receives from its
one end node, say u, in expectation is exactly the number of messages at u divided by d(u). Using
Chernoff bound we get, Pr[X ≥ 24 log2 n/ε] ≤ 2−4 log

2 n/ε ≤ n−4. By union bound we get that
there exists an edge and an integer 1 ≤ j ≤ λ such that the probability of X ≥ 24 log2 n/ε is
at most |E(G)|λn−4 ≤ 1

n
, since |E(G)| ≤ n2 and λ < n. Hence the number of messages that

go through any edge in any round is at most 24 log2 n/ε = O(log2 n/ε) with high probability. So
the message size will be at most O(log3 n/ε) bits w.h.p. over any edge in each round (a message
contains source IDs and coupon IDs each of which can be encoded using log n bits). Since our
considered model allows polylogarithmic (i.e., O(log3 n)) bits messages per edge per round, we
can extend all the random walk’s length from i to length i + 1 in O(1/ε) rounds. Therefore, for
walks of length λ it takes O(λ/ε) rounds as claimed.

Lemma 4.3. With the message size O(log n) in Phase 2, one stitching step from each node in
parallel can be done in one round.

Proof. Each node knows all of its short walks’ (or coupons’) destination address and theCouponID.
Each time when a source or connector node wants to stitch, it chooses its unused coupons (created in
Phase 1) sequentially in order of the coupon IDs. Then it contacts the destination node (holding the
coupon) through direct communication and informs the destination node as the next connector node
or stitching point. Therefore, in each round, it is sufficient for any node to send to connector node
u the maximal CouponID with destination u that it has used so far. This implies that message size
of O(log n) bits per edge suffices for this process. Since we assume the network allows O(log3 n)
congestion, this one time stitching from each node in parallel will finish in one round.

Lemma 4.4. Phase 2 finishes in O
(
logn
λε

+ λ
)

rounds.

Proof. Phase 2 is for stitching short walks of length λ to get a long walk of lengthB1 log n/ε, where
the constant B1 is chosen sufficiently large so that all the random walks terminate within this length
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with high probability. Therefore, it is sufficient to stitch approximately O
(

log n/λε
)

times from
each node in parallel. Since each stitching step can be done in one of round (cf. Lemma 4.3), the
stitching process takes O

(
logn
λε

)
rounds. Now it remains to show the running time of completing the

random walks at the end of Phase 2 (Step 7 in Algorithm 2). For this step, the length of the random
walk is less than λ, which are executed in parallel. In this case, we do not need to send any IDs or
counters with the coupon, simply send the count of the tokens traversing an edge in a given round
to the appropriate neighbors (i.e., in the similar way as of Algorithm 1). Each token corresponds to
a random walk for the remaining length left to complete the length L. This will take at most O(λ)
rounds. Hence, Phase 2 finishes in O

(
logn
λε

+ λ
)

rounds.

Lemma 4.5. Phase 3 finishes in O
(
λ
ε

)
rounds.

Proof. Recall that each short walk is of length λ. Phase 3 is simply tracing back the Θ(log n) short
walks from each node in parallel. So it is easy to see that we can perform all the reverse walks
in parallel in O(λ/ε) rounds (in the same way as to do all the short walks in parallel in Phase 1).
Therefore, in accordance with the Lemma 4.2, Phase 3 finishes in O

(
λ
ε

)
rounds.

Notice that the Coupon IDs are useful in this context, since the random walks starting at v and
ending at u may have followed different paths; u just knowing the number of random walks coming
from v is insufficient to backtrace the walks. Moreover, the nodes on the paths will need to know the
CouponID as well for the same reason. Now we are ready to show the main result of this section.

Theorem 4.6. The IMPROVED-PAGERANK-ALGORITHM (cf. Algorithm 2) computes a δ- approxi-
mation of the PageRanks with high probability for any constant δ and finishes inO

(√
logn
ε

)
rounds.

Proof. The algorithm IMPROVED-PAGERANK-ALGORITHM consists of three phases. We have
calculated above the running time of each phase separately. Now we want to compute the overall
running time of the algorithm by combining these three phases and by putting appropriate value
of parameters. By summing up the running time of all the three phases, we get from Lemmas
4.2, 4.4, and 4.5 that the total time taken to finish the IMPROVED-PAGERANK-ALGORITHM is
O
(
λ
ε

+ logn
λε

+ λ + λ
ε

)
rounds. Choosing λ =

√
log n, gives the required bound as O

(√
logn
ε

)
. The

correctness and approximation guarantee follows from the previous section.

5 Conclusion
We presented fast distributed algorithms for computing PageRank, a measure of fundamental in-
terest in networks. Our algorithms are Monte-Carlo and based on the idea of speeding up random
walks in a distributed network. Our faster algorithm takes time only sub-logarithmic in n which
can be useful in large-scale, resource-constrained, distributed networks, where running time is es-
pecially crucial. Since they are based on random walks, which are lightweight, robust, and local,
they can be amenable to self-organizing and dynamic networks.
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