Skip to main content

Linear Space Bootstrap Communication Schemes

  • Conference paper
Distributed Computing and Networking (ICDCN 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7730))

Included in the following conference series:

Abstract

We consider a system of n processes with ids not a priori known, that are drawn from a large space, potentially unbounded. How can these n processes communicate to solve a task? We show that n a priori allocated Multi-Writer Multi-Reader (MWMR) registers are both needed and sufficient to solve any read-write wait free solvable task. This contrasts with the existing possible solution borrowed from adaptive algorithms that require Θ(n 2) MWMR registers.

To obtain these results, the paper shows how the processes can non blocking emulate a system of n Single-Writer Multi-Reader (SWMR) registers on top of n MWMR registers. It is impossible to do such an emulation with n − 1 MWMR registers.

Furthermore, we want to solve a sequence of tasks (potentially infinite) that are sequentially dependent (processes need the previous task’s outputs in order to proceed to the next task). A non blocking emulation might starve a process forever. By doubling the space complexity, using 2n − 1 rather than just n registers, the computation is wait free rather than non blocking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snapshots of shared memory. Journal of the ACM 40(4), 873–890 (1993)

    Article  MATH  Google Scholar 

  2. Afek, Y., De Levie, Y.: Efficient adaptive collect algorithms. Distributed Computing 20, 221–238 (2007)

    Article  Google Scholar 

  3. Afek, Y., Stupp, G., Touitou, D.: Long-lived adaptive collect with applications. In: Proceedings of FOCS 1999, pp. 262–272. IEEE (1999)

    Google Scholar 

  4. Aguilera, M.K.: A pleasant stroll through the land of infinitely many creatures. SIGACT News 35(2), 36–59 (2004)

    Article  Google Scholar 

  5. Aspnes, J., Attiya, H., Censor-Hillel, K.: Polylogarithmic concurrent data structures from monotone circuits. J. ACM 59(1), 2:1–2:24 (2012)

    Google Scholar 

  6. Attiya, H., Bar-Noy, A., Dolev, D., Peleg, D., Reischuk, R.: Renaming in an asynchronous environment. Journal of the ACM 37(3), 524–548 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Attiya, H., Fouren, A.: Polynomial and Adaptive Long-Lived (2k - 1)-Renaming. In: Herlihy, M.P. (ed.) DISC 2000. LNCS, vol. 1914, pp. 149–163. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  8. Attiya, H., Fouren, A.: Adaptive and efficient algorithms for lattice agreement and renaming. SIAM J. Comput. 31(2), 642–664 (2002)

    Article  MathSciNet  Google Scholar 

  9. Attiya, H., Fouren, A.: Algorithms adapting to point contention. J. ACM 50(4), 444–468 (2003)

    Article  MathSciNet  Google Scholar 

  10. Attiya, H., Fouren, A., Gafni, E.: An adaptive collect algorithm with applications. Distributed Computing 15(2), 87–96 (2002)

    Article  Google Scholar 

  11. Attiya, H., Welch, J.: Distributed Computing. Fundamentals, Simulations, and Advanced Topics. John Wiley & Sons (2004)

    Google Scholar 

  12. Borowsky, E., Gafni, E.: Immediate atomic snapshots and fast renaming. In: PODC, pp. 41–51. ACM Press (1993)

    Google Scholar 

  13. Burns, J.E., Lynch, N.A.: Bounds on shared memory for mutual exclusion. Inf. Comput. 107(2), 171–184 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Castañeda, A., Rajsbaum, S.: New combinatorial topology bounds for renaming: the lower bound. Distributed Computing 22(5-6), 287–301 (2010)

    Article  MATH  Google Scholar 

  15. Delporte-Gallet, C., Fauconnier, H., Gafni, E., Rajsbaum, S.: Linear space bootstrap communication scheme. Technical Report hal-00717235, LIAFA, Université Paris 7-Denis Diderot, France (2012)

    Google Scholar 

  16. Fatourou, P., Fich, F., Ruppert, E.: Space-optimal multi-writer snapshot objects are slow. In: Proceedings of the Twenty-First Annual Symposium on Principles of Distributed Computing, PODC 2002, pp. 13–20. ACM, New York (2002)

    Chapter  Google Scholar 

  17. Fatourou, P., Fich, F.E., Ruppert, E.: Time-space tradeoffs for implementations of snapshots. In: Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Computing, STOC 2006, pp. 169–178. ACM, New York (2006)

    Chapter  Google Scholar 

  18. Fich, F., Herlihy, M., Shavit, N.: On the space complexity of randomized synchronization. J. ACM 45(5), 843–862 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Helmi, M., Higham, L., Pacheco, E., Woelfel, P.: The space complexity of long-lived and one-shot timestamp implementations. In: Proceedings of the 30th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, PODC 2011, pp. 139–148. ACM, New York (2011)

    Chapter  Google Scholar 

  20. Herlihy, M.: Wait-free synchronization. ACM Transactions on Programming Languages and Systems 13(1), 123–149 (1991)

    Article  Google Scholar 

  21. Herlihy, M., Shavit, N.: The topological structure of asynchronous computability. Journal of the ACM 46(2), 858–923 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kaufmann (2008)

    Google Scholar 

  23. Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

    Article  Google Scholar 

  24. Jayanti, P., Tan, K., Toueg, S.: Time and space lower bounds for nonblocking implementations. SIAM J. Comput. 30(2), 438–456 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lamport, L.: On interprocess communication; part I and II. Distributed Computing 1(2), 77–101 (1986)

    Article  MATH  Google Scholar 

  26. Moir, M.: Fast, long-lived renaming improved and simplified. Sci. Comput. Program. 30(3), 287–308 (1998)

    Article  MathSciNet  Google Scholar 

  27. Styer, E., Peterson, G.L.: Tight bounds for shared memory symmetric mutual exclusion problems. In: Proceedings of the Eighth Annual ACM Symposium on Principles of Distributed Computing, PODC 1989, pp. 177–191. ACM, New York (1989)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Delporte-Gallet, C., Fauconnier, H., Gafni, E., Rajsbaum, S. (2013). Linear Space Bootstrap Communication Schemes. In: Frey, D., Raynal, M., Sarkar, S., Shyamasundar, R.K., Sinha, P. (eds) Distributed Computing and Networking. ICDCN 2013. Lecture Notes in Computer Science, vol 7730. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35668-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35668-1_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35667-4

  • Online ISBN: 978-3-642-35668-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics