Abstract
This paper defines a new notion of bounded pseudorandomness for certain classes of sub-computable functions where one does not have access to a universal machine for that class within the class. In particular, we define such a version of randomness for the class of primitive recursive functions and a certain subclass of PSPACE functions. Our new notion of primitive recursive bounded pseudorandomness is robust in that there are equivalent formulations in terms of (1) Martin-Löf tests, (2) Kolmogorov complexity, and (3) martingales.
Cenzer was partially supported by the NSF grant DMS-652372.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Allender, E., Strauss, M.: Measure on small complexity classes with applications for BPP. In: Proceedings of the 35th Symposium on Foundations of Computer Science, pp. 807–818. IEEE Computer Society (1994)
Allender, E., Strauss, M.: Measure on P: Robustness of the Notion. In: Hájek, P., Wiedermann, J. (eds.) MFCS 1995. LNCS, vol. 969, pp. 129–138. Springer, Heidelberg (1995)
Ambos-Spies, K., Mayordomo, E.: Resource-bounded measure and randomness. In: Sorbi, A. (ed.) Complexity, Logic and Recursion Theory. Lecture Notes in Pure and Applied Mathematics, pp. 1–47. Marcel Dekker, New York (1997)
Barmpalias, G., Brodhead, P., Cenzer, D., Dashti, S., Weber, R.: Algorithmic randomness of closed sets. J. Logic and Computation 17, 1041–1062 (2007)
Barmpalias, G., Brodhead, P., Cenzer, D., Remmel, J.B., Weber, R.: Algorithmic Randomness of Continuous Functions. Archive for Mathematical Logic 46, 533–546 (2008)
Bienvenu, L., Merkle, W.: Reconciling Data Compression and Kolmogorov Complexity. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 643–654. Springer, Heidelberg (2007)
Blum, M., Micali, S.: How to Generate Cryptographically Strong Sequences of Pseudorandom Bits. Siam J. Computing 13, 850–864 (1984)
Brodhead, P., Downey, R., Ng, K.M.: Bounded Randomness. In: Dinneen, M.J., Khoussainov, B., Nies, A. (eds.) WTCS 2012 (Calude Festschrift). LNCS, vol. 7160, pp. 59–70. Springer, Heidelberg (2012)
Buhrman, H., Longpre, L.: Compressibility and resource bounded measure. SIAM Journal on Computing 31(3), 876–886 (2002)
Chaitin, G.: On the length of programs for computing finite binary sequences. J. Assoc. Comp. Mach. 13, 547–569 (1966)
Chernov, A., Shen, A., Vereshchagin, N., Vovk, V.: On-Line Probability, Complexity and Randomness. In: Freund, Y., Györfi, L., Turán, G., Zeugmann, T. (eds.) ALT 2008. LNCS (LNAI), vol. 5254, pp. 138–153. Springer, Heidelberg (2008)
Church, A.: On the concept of random sequences. Bull. Amer. Math. Soc. 46, 130–135 (1940)
Di Paola, R.: Random sets in subrecursive hierarchies. J. Assoc. Comp. Mach. 16, 621–630 (1969)
Downey, R.G., Griffiths, E.J., Reid, S.: On Kurtz randomness. Theoretical Computer Science 321, 249–270 (2004)
Downey, R., Hirschfeldt, D.: Algorithmic Randomness and Complexity. Springer (2011)
Kautz, S.: Degrees of Random Sets. Ph.D. Thesis, Cornell University (1991)
Ko, K.: On the notion of infinite pseudorandom sequences. Theoretical Computer Science 48, 9–33 (1986)
Kolmogorov, A.N.: Three approaches to the quantitative definition of information. Problems of Information Transmission 1, 1–7 (1965)
Kurtz, S.: Randomness and Genericity in the Degrees of Unsolvability. Ph.D. Thesis, University of Illinois at Urbana (1981)
Levin, L.: On the notion of a random sequence. Soviet Math. Doklady 14, 1413–1416 (1973)
Li, M., Vitanyi, P.: An introduction to Kolmogorov Complexity and Its Applications, 3rd edn. Springer (2008)
Lutz, J.H.: Category and measure in complexity classes. SIAM Journal on Computing 19, 1100–1131 (1990)
Miyabe, K.: Truth-table Schnorr randomness and truth-table reducible randomness. Math. Logic Quarterly 57, 323–338 (2011)
Martin-Löf, P.: The definition of random sequences. Information and Control 9, 602–619 (1966)
Nies, A.: Computability and Randomness. Oxford University Press (2009)
Schnorr, C.P.: A unified approach to the definition of random sequences. Mathematical Systems Theory 5, 246–258 (1971)
Ville, J.: Étude Critique de la Notion de Collectif. Gauthier-Villars, Paris (1939)
Wang, Y.: Resource bounded randomness and computational complexity. Theoretical Computer Science 237, 33–55 (2000)
Wilber, R.: Randomness and the density of hard problems. In: Proc. 24th IEEE Symposium on Foundations of Computer Science, pp. 335–342 (1983)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cenzer, D., Remmel, J.B. (2013). Sub-computable Bounded Pseudorandomness. In: Artemov, S., Nerode, A. (eds) Logical Foundations of Computer Science. LFCS 2013. Lecture Notes in Computer Science, vol 7734. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35722-0_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-35722-0_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-35721-3
Online ISBN: 978-3-642-35722-0
eBook Packages: Computer ScienceComputer Science (R0)