Skip to main content

Sub-computable Bounded Pseudorandomness

  • Conference paper
Logical Foundations of Computer Science (LFCS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7734))

Included in the following conference series:

Abstract

This paper defines a new notion of bounded pseudorandomness for certain classes of sub-computable functions where one does not have access to a universal machine for that class within the class. In particular, we define such a version of randomness for the class of primitive recursive functions and a certain subclass of PSPACE functions. Our new notion of primitive recursive bounded pseudorandomness is robust in that there are equivalent formulations in terms of (1) Martin-Löf tests, (2) Kolmogorov complexity, and (3) martingales.

Cenzer was partially supported by the NSF grant DMS-652372.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allender, E., Strauss, M.: Measure on small complexity classes with applications for BPP. In: Proceedings of the 35th Symposium on Foundations of Computer Science, pp. 807–818. IEEE Computer Society (1994)

    Google Scholar 

  2. Allender, E., Strauss, M.: Measure on P: Robustness of the Notion. In: Hájek, P., Wiedermann, J. (eds.) MFCS 1995. LNCS, vol. 969, pp. 129–138. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  3. Ambos-Spies, K., Mayordomo, E.: Resource-bounded measure and randomness. In: Sorbi, A. (ed.) Complexity, Logic and Recursion Theory. Lecture Notes in Pure and Applied Mathematics, pp. 1–47. Marcel Dekker, New York (1997)

    Google Scholar 

  4. Barmpalias, G., Brodhead, P., Cenzer, D., Dashti, S., Weber, R.: Algorithmic randomness of closed sets. J. Logic and Computation 17, 1041–1062 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barmpalias, G., Brodhead, P., Cenzer, D., Remmel, J.B., Weber, R.: Algorithmic Randomness of Continuous Functions. Archive for Mathematical Logic 46, 533–546 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bienvenu, L., Merkle, W.: Reconciling Data Compression and Kolmogorov Complexity. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 643–654. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Blum, M., Micali, S.: How to Generate Cryptographically Strong Sequences of Pseudorandom Bits. Siam J. Computing 13, 850–864 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brodhead, P., Downey, R., Ng, K.M.: Bounded Randomness. In: Dinneen, M.J., Khoussainov, B., Nies, A. (eds.) WTCS 2012 (Calude Festschrift). LNCS, vol. 7160, pp. 59–70. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Buhrman, H., Longpre, L.: Compressibility and resource bounded measure. SIAM Journal on Computing 31(3), 876–886 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chaitin, G.: On the length of programs for computing finite binary sequences. J. Assoc. Comp. Mach. 13, 547–569 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chernov, A., Shen, A., Vereshchagin, N., Vovk, V.: On-Line Probability, Complexity and Randomness. In: Freund, Y., Györfi, L., Turán, G., Zeugmann, T. (eds.) ALT 2008. LNCS (LNAI), vol. 5254, pp. 138–153. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Church, A.: On the concept of random sequences. Bull. Amer. Math. Soc. 46, 130–135 (1940)

    Article  MathSciNet  Google Scholar 

  13. Di Paola, R.: Random sets in subrecursive hierarchies. J. Assoc. Comp. Mach. 16, 621–630 (1969)

    Article  MATH  Google Scholar 

  14. Downey, R.G., Griffiths, E.J., Reid, S.: On Kurtz randomness. Theoretical Computer Science 321, 249–270 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Downey, R., Hirschfeldt, D.: Algorithmic Randomness and Complexity. Springer (2011)

    Google Scholar 

  16. Kautz, S.: Degrees of Random Sets. Ph.D. Thesis, Cornell University (1991)

    Google Scholar 

  17. Ko, K.: On the notion of infinite pseudorandom sequences. Theoretical Computer Science 48, 9–33 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kolmogorov, A.N.: Three approaches to the quantitative definition of information. Problems of Information Transmission 1, 1–7 (1965)

    Google Scholar 

  19. Kurtz, S.: Randomness and Genericity in the Degrees of Unsolvability. Ph.D. Thesis, University of Illinois at Urbana (1981)

    Google Scholar 

  20. Levin, L.: On the notion of a random sequence. Soviet Math. Doklady 14, 1413–1416 (1973)

    MATH  Google Scholar 

  21. Li, M., Vitanyi, P.: An introduction to Kolmogorov Complexity and Its Applications, 3rd edn. Springer (2008)

    Google Scholar 

  22. Lutz, J.H.: Category and measure in complexity classes. SIAM Journal on Computing 19, 1100–1131 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  23. Miyabe, K.: Truth-table Schnorr randomness and truth-table reducible randomness. Math. Logic Quarterly 57, 323–338 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Martin-Löf, P.: The definition of random sequences. Information and Control 9, 602–619 (1966)

    Article  MathSciNet  Google Scholar 

  25. Nies, A.: Computability and Randomness. Oxford University Press (2009)

    Google Scholar 

  26. Schnorr, C.P.: A unified approach to the definition of random sequences. Mathematical Systems Theory 5, 246–258 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ville, J.: Étude Critique de la Notion de Collectif. Gauthier-Villars, Paris (1939)

    Google Scholar 

  28. Wang, Y.: Resource bounded randomness and computational complexity. Theoretical Computer Science 237, 33–55 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wilber, R.: Randomness and the density of hard problems. In: Proc. 24th IEEE Symposium on Foundations of Computer Science, pp. 335–342 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cenzer, D., Remmel, J.B. (2013). Sub-computable Bounded Pseudorandomness. In: Artemov, S., Nerode, A. (eds) Logical Foundations of Computer Science. LFCS 2013. Lecture Notes in Computer Science, vol 7734. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35722-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35722-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35721-3

  • Online ISBN: 978-3-642-35722-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics