Skip to main content

Hyperspectral Image Classification by Using Pixel Spatial Correlation

  • Conference paper
Advances in Multimedia Modeling (MMM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7732))

Included in the following conference series:

Abstract

This paper introduces a hyperspectral image classification approach by using pixel spatial relationship. In hyperspectral images, the spatial relationship among pixels has been shown to be important in the exploration of pixel labels. To better employ the spatial information, we propose to estimate the correlation among pixels in a hypergraph structure. In the constructed hypergraph, each pixel is denoted by a vertex, and the hyperedge is constructed by using the spatial neighbors of each pixel. Semi-supervised learning on the constructed hypergraph is conducted for hyperspectral image classification. Experiments on two datasets are used to evaluate the performance of the proposed method. Comparisons with the state-of-the-art methods demonstrate that the proposed method can effectively investigate the spatial relationship among pixels and achieve better hyperspectral image classification results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bandos, T., Bruzzone, L., Camps-Valls, G.: Classification of hyperspectral images with regularized linear discriminant analysis. IEEE Transaction on Geoscience and Remote Sensing 47(3), 862–873 (2009)

    Article  Google Scholar 

  2. Berge, A., Solberg, A.: Structured gaussian components for hyperspectral image classification. IEEE Transaction on Geoscience and Remote Sensing 44(11), 3386–3396 (2006)

    Article  Google Scholar 

  3. Bilgin, G., Erturk, S., Yildirim, T.: Unsupervised classification of hyperspectral-image data using fuzzy approaches that spatially exploit membership relations. IEEE Geoscience and Remote Sensing Letters 5(4), 673–677 (2008)

    Article  Google Scholar 

  4. Camps-Valls, G., Marsheva, T.B., Zhou, D.: Semi-supervised graph-based hyperspectral image classification. IEEE Transaction on Geoscience and Remote Sensing 45(10), 3044–3054 (2007)

    Article  Google Scholar 

  5. Gao, Y., Wang, M., Luan, H., Shen, J., Yan, S., Tao, D.: Tag-based social image search with visual-text joint hypergraph learning. In: ACM Conference on Multimedia, pp. 1517–1520 (2011)

    Google Scholar 

  6. Gao, Y., Wang, M., Tao, D., Ji, R., Dai, Q.: 3D object retrieval and recognition with hypergraph analysis. IEEE Transactions on Image Processing 21(9), 4290–4303 (2012)

    Article  MathSciNet  Google Scholar 

  7. Gao, Y., Wang, M., Zha, Z., Shen, J., Li, X., Wu, X.: Visual-textual joint relevance learning for tag-based social image search. IEEE Transactions on Image Processing (in press)

    Google Scholar 

  8. Gu, Y., Wang, C., You, D., Zhang, Y., Wang, S., Zhang, Y.: Representative multiple kernel learning for classification in hyperspectral imagery. IEEE Transaction on Geoscience and Remote Sensing 50(7), 2852–2865 (2012)

    Article  Google Scholar 

  9. Guo, B., Damper, S.G.R., Nelson, J.: Band selection for hyperspectral image classification using mutual information. IEEE Geoscience and Remote Sensing Letters 3(4), 522–526 (2006)

    Article  Google Scholar 

  10. Kuo, B.-C., Li, C.-H., Yang, J.-M.: Kernel nonparametric weighted feature extraction for hyperspectral image classification. IEEE Transaction on Geoscience and Remote Sensing 47(4), 1139–1155 (2009)

    Article  Google Scholar 

  11. Landgrebe, D.: Hyperspectral image data analysis. IEEE Signal Process Magazine 19(1), 17–28 (2002)

    Article  Google Scholar 

  12. Ma, L., Crawford, M., Tian, J.: Local manifold learning-based -nearest-neighbor for hyperspectral image classification. IEEE Transaction on Geoscience and Remote Sensing 48(11), 4099–4109 (2010)

    Google Scholar 

  13. Marconcini, M., Camps-Valls, G., Bruzzone, L.: A composite semisupervised svm for classification of hyperspectral images. IEEE Geoscience and Remote Sensing Letters 6(2), 234–238 (2009)

    Article  Google Scholar 

  14. Martinez-Uso, A., Pla, F., Sotoca, J.M., Garcia-Sevilla, P.: Clustering-based hyperspectral band selection using information measures. IEEE Transaction on Geoscience and Remote Sensing 45(12), 4158–4171 (2007)

    Article  Google Scholar 

  15. ul Haq, Q.S., Tao, L., Sun, F., Yang, S.: A fast and robust sparse approach for hyperspectral data classification using a few labeled samples. IEEE Transaction on Geoscience and Remote Sensing 50(6), 2287–2302 (2012)

    Article  Google Scholar 

  16. Velasco-Forero, S., Manian, V.: Improving hyperspectral image classification using spatial preprocessing. IEEE Geoscience and Remote Sensing Letters 6(2), 297–301 (2009)

    Article  Google Scholar 

  17. Wang, J., Chang, C.-I.: Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis. IEEE Transaction on Geoscience and Remote Sensing 44(6), 1586–1600 (2006)

    Article  Google Scholar 

  18. Wang, J., Zhang, Z., Zha, H.: Adaptive manifold learning. In: Proceedings of Advances in Neural Information Processing Systems (2004)

    Google Scholar 

  19. Wen, Y., Gao, Y., Liu, S., Cheng, Q., Ji, R.: Hyperspetral image classification with hypergraph modelling. In: Proceedings of International Conference on Internet Multimedia Computing and Service (2012)

    Google Scholar 

  20. Xia, S., Hancock, E.: Learning large scale class specific hyper graphs for object recognition. In: Proceedings of International Conference on Image and Graphics, pp. 366–371 (2008)

    Google Scholar 

  21. Yu, J., Tao, D., Wang, M.: Adaptive hypergraph learning and its application in image classification. IEEE Transactions on Image Processing 21(7), 3262–3272 (2012)

    Article  MathSciNet  Google Scholar 

  22. Zass, R., Shashua, A.: Probabilistic graph and hypergraph matching. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (2008)

    Google Scholar 

  23. Zhou, D., Huang, J., Schokopf, B.: Learning with hypergraphs: Clustering, classification, and embedding. In: NIPS (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gao, Y., Chua, TS. (2013). Hyperspectral Image Classification by Using Pixel Spatial Correlation. In: Li, S., et al. Advances in Multimedia Modeling. MMM 2013. Lecture Notes in Computer Science, vol 7732. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35725-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35725-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35724-4

  • Online ISBN: 978-3-642-35725-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics