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Abstract. In this paper, we study collective additive tree spanners for families of graphs enjoying
special Robertson-Seymour’s tree-decompositions, and demonstrate interesting consequences of ob-
tained results. We say that a graph G admits a system of µ collective additive tree r-spanners (resp.,
multiplicative tree t-spanners) if there is a system T (G) of at most µ spanning trees of G such that
for any two vertices x, y of G a spanning tree T ∈ T (G) exists such that dT (x, y) ≤ dG(x, y) + r
(resp., dT (x, y) ≤ t · dG(x, y)). When µ = 1 one gets the notion of additive tree r-spanner (resp.,
multiplicative tree t-spanner). It is known that if a graph G has a multiplicative tree t-spanner, then
G admits a Robertson-Seymour’s tree-decomposition with bags of radius at most ⌈t/2⌉ in G. We
use this to demonstrate that there is a polynomial time algorithm that, given an n-vertex graph G
admitting a multiplicative tree t-spanner, constructs a system of at most log2 n collective additive
tree O(t log n)-spanners of G. That is, with a slight increase in the number of trees and in the stretch,
one can “turn” a multiplicative tree spanner into a small set of collective additive tree spanners. We
extend this result by showing that if a graph G admits a multiplicative t-spanner with tree-width
k − 1, then G admits a Robertson-Seymour’s tree-decomposition each bag of which can be covered
with at most k disks of G of radius at most ⌈t/2⌉ each. This is used to demonstrate that, for every
fixed k, there is a polynomial time algorithm that, given an n-vertex graph G admitting a multiplica-
tive t-spanner with tree-width k − 1, constructs a system of at most k(1 + log2 n) collective additive
tree O(t log n)-spanners of G.

Keywords: graph algorithms; approximation algorithms; tree spanner problem; collective tree span-
ners; spanners of bounded tree-width; Robertson-Seymour’s tree-decomposition; balanced separators.

1 Introduction

One of the basic questions in the design of routing schemes for communication networks is to
construct a spanning network (a so-called spanner) which has two (often conflicting) properties:
it should have simple structure and nicely approximate distances in the network. This problem
fits in a larger framework of combinatorial and algorithmic problems that are concerned with
distances in a finite metric space induced by a graph. An arbitrary metric space (in particular a
finite metric defined by a graph) might not have enough structure to exploit algorithmically. A
powerful technique that has been successfully used recently in this context is to embed the given
metric space in a simpler metric space such that the distances are approximately preserved in
the embedding. New and improved algorithms have resulted from this idea for several important
problems (see, e.g., [4,7,18,34,44,51]).

There are several ways to measure the quality of this approximation, two of them leading to the
notion of a spanner. For t ≥ 1, a spanning subgraph H of G = (V,E) is called a (multiplicative)
t-spanner of G if dH(u, v) ≤ t · dG(u, v) for all u, v ∈ V [19,55,56]. If r ≥ 0 and dH(u, v) ≤
dG(u, v)+r, for all u, v ∈ V , then H is called an additive r-spanner of G [50,59,60]. The parameter
t is called the stretch (or stretch factor) of H, while the parameter r is called the surplus of H.
In what follows, we will often omit the word “multiplicative” when we refer to multiplicative
spanners.

Tree metrics are a very natural class of simple metric spaces since many algorithmic problems
become tractable on them. A (multiplicative) tree t-spanner of a graph G is a spanning tree with
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a stretch t [17], and an additive tree r-spanner of G is a spanning tree with a surplus r [59].
If we approximate the graph by a tree spanner, we can solve the problem on the tree and the
solution interpret on the original graph. The tree t-spanner problem asks, given a graph G and
a positive number t, whether G admits a tree t-spanner. Note that the problem of finding a tree
t-spanner of G minimizing t is known in literature also as the Minimum Max-Stretch spanning
Tree problem (see, e.g., [39] and literature cited therein).

Unfortunately, not many graph families admit good tree spanners. This motivates the study
of sparse spanners, i.e., spanners with a small amount of edges. There are many applications of
spanners in various areas; especially, in distributed systems and communication networks. In [57],
close relationships were established between the quality of spanners (in terms of stretch factor and
the number of spanner edges), and the time and communication complexities of any synchronizer
for the network based on this spanner. Another example is the usage of tree t-spanners in the
analysis of arrow distributed queuing protocols [46,54]. Sparse spanners are very useful in message
routing in communication networks; in order to maintain succinct routing tables, efficient routing
schemes can use only the edges of a sparse spanner [58]. The Sparsest t-Spanner problem asks,
for a given graph G and a number t, to find a t-spanner of G with the smallest number of edges.
We refer to the survey paper of Peleg [53] for an overview on spanners.

Inspired by ideas from works of Alon et al. [1], Bartal [4,5], Fakcharoenphol et al. [40], and
to extend those ideas to designing compact and efficient routing and distance labeling schemes in
networks, in [32], a new notion of collective tree spanners1 were introduced. This notion slightly
weaker than the one of a tree spanner and slightly stronger than the notion of a sparse spanner.
We say that a graph G = (V,E) admits a system of µ collective additive tree r-spanners if there
is a system T (G) of at most µ spanning trees of G such that for any two vertices x, y of G a
spanning tree T ∈ T (G) exists such that dT (x, y) ≤ dG(x, y) + r (a multiplicative variant of this
notion can be defined analogously). Clearly, if G admits a system of µ collective additive tree
r-spanners, then G admits an additive r-spanner with at most µ× (n− 1) edges (take the union
of all those trees), and if µ = 1 then G admits an additive tree r-spanner.

Recently, in [28], spanners of bounded tree-width were introduced, motivated by the fact that
many algorithmic problems are tractable on graphs of bounded tree-width, and a spanner H of
G with small tree-width can be used to obtain an approximate solution to a problem on G. In
particular, efficient and compact distance and routing labeling schemes are available for bounded
tree-width graphs (see, e.g., [31,44] and papers cited therein), and they can be used to compute
approximate distances and route along paths that are close to shortest in G. The k-Tree-width

t-spanner problem asks, for a given graph G, an integers k and a positive number t ≥ 1, whether
G admits a t-spanner of tree-width at most k. Every connected graph with n vertices and at most
n− 1 +m edges is of tree-width at most m+ 1 and hence this problem is a generalization of the
Tree t-Spanner and the Sparsest t-Spanner problems. Furthermore, t-spanners of bounded
tree-width have much more structure to exploit algorithmically than sparse t-spanners (which
have a small number of edges but may lack other nice structural properties).

1.1 Related work

Tree spanners. Substantial work has been done on the tree t-spanner problem on unweighted
graphs. Cai and Corneil [17] have shown that, for a given graph G, the problem to decide whether
G has a tree t-spanner is NP-complete for any fixed t ≥ 4 and is linear time solvable for t = 1, 2
(the status of the case t = 3 is open for general graphs)2. The NP-completeness result was
further strengthened in [15] and [16], where Branstädt et al. showed that the problem remains

1 Independently, Gupta et al. in [44] introduced a similar concept which is called tree covers there.
2 When G is an unweighted graph, t can be assumed to be an integer.
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NP-complete even for the class of chordal graphs (i.e., for graphs where each induced cycle has
length 3) and every fixed t ≥ 4, and for the class of chordal bipartite graphs (i.e., for bipartite
graphs where each induced cycle has length 4) and every fixed t ≥ 5.

The tree t-spanner problem on planar graphs was studied in [28,41]. In [41], Fekete and
Kremer proved that the tree t-spanner problem on planar graphs is NP-complete (when t is
part of the input) and polynomial time solvable for t = 3. For fixed t ≥ 4, the complexity of the
tree t-spanner problem on arbitrary planar graphs was left as an open problem in [41]. This
open problem was recently resolved in [28] by Dragan et al., where it was shown that the tree t-
spanner problem is linear time solvable for every fixed constant t on the class of apex-minor-free
graphs which includes all planar graphs and all graphs of bounded genus. Note also that a number
of particular graph classes (like interval graphs, permutation graphs, asteroidal-triple–free graphs,
strongly chordal graphs, dually chordal graphs, and others) admit additive tree r-spanners for
small values of r (we refer reader to [14,15,16,17,41,49,53,54,59,60] and papers cited therein).

The first O(log n)-approximation algorithm for the minimum value of t for the tree t-
spanner problem was developed by Emek and Peleg in [39] (where n is the number of vertices in
a graph). Recently, another logarithmic approximation algorithm for the problem was proposed
in [30] (we elaborate more on this in Subsection 1.2). Emek and Peleg also established in [39] that
unless P = NP, the problem cannot be approximated additively by any o(n) term. Hardness of
approximation is established also in [49], where it was shown that approximating the minimum
value of t for the tree t-spanner problem within factor better than 2 is NP-hard (see also [54]
for an earlier result).

Sparse spanners. Sparse t-spanners were introduced by Peleg, Schäffer and Ullman in [55,57] and
since that time were studied extensively. It was shown by Peleg and Schäffer in [55] that the
problem of deciding whether a graph G has a t-spanner with at most m edges is NP-complete.
Later, Kortsarz [47] showed that for every t ≥ 2 there is a constant c < 1 such that it is NP-hard
to approximate the sparsest t-spanner within the ratio c · log n, where n is the number of vertices
in the graph. On the other hand, the problem admits a O(log n)-ratio approximation for t = 2
[48,47] and a O(n2/(t+1))-ratio approximation for t > 2 [38]. For some other inapproximability
and approximability results for the Sparsest t-Spanner problem on general graphs we refer the
reader to [6,12,22,23,36,37,38,62] and papers cited therein. It is interesting to note also that any
(even weighted) n-vertex graph admits an O(2k − 1)-spanner with at most O(n1+1/k) edges for
any k ≥ 1, and such a spanner can be constructed in polynomial time [2,9,62].

On planar graphs the Sparsest t-Spanner problem was studied as well. Brandes and Handke
have shown that the decision version of the problem remains NP-complete on planar graphs for
every fixed t ≥ 5 (the case 2 ≤ t ≤ 4 is open) [13]. Duckworth, Wormald, and Zito [33] have shown
that the problem of finding a sparsest 2-spanner of a 4-connected planar triangulation admits a
polynomial time approximation scheme (PTAS). Dragan et al. [29] proved that the Sparsest

t-Spanner problem admits PTAS for graph classes of bounded local tree-width (and therefore
for planar and bounded genus graphs).

Sparse additive spanners were considered in [8,24,35,50,63]. It is known that every n-vertex
graph admits an additive 2-spanner with at most Θ(n3/2) edges [24,35], an additive 6-spanner
with at most O(n4/3) edges [8], and an additive O(n(1−1/k)/2)-spanner with at most O(n1+1/k)
edges for any k ≥ 1 [8]. All those spanners can be constructed in polynomial time. We refer the
reader to paper [63] for a good summary of the state of the art results on the sparsest additive
spanner problem in general graphs.

Collective tree spanners. The problem of finding “small” systems of collective additive tree r-
spanners for small values of r was examined on special classes of graphs in [20,27,31,32,64]. For
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example, in [20,32], sharp results were obtained for unweighted chordal graphs and c-chordal
graphs (i.e., the graphs where each induced cycle has length at most c): every c-chordal graph
admits a system of at most log2 n collective additive tree (2⌊c/2⌋)–spanners, constructible in
polynomial time; no system of constant number of collective additive tree r-spanners can exist
for chordal graphs (i.e., when c = 3) and r ≤ 3, and no system of constant number of collective
additive tree r-spanners can exist for outerplanar graphs for any constant r.

Only papers [31,44,64] have investigated collective (multiplicative or additive) tree spanners
in weighted graphs. It was shown that any weighted n-vertex planar graph admits a system of
O(

√
n) collective multiplicative tree 1-spanners (equivalently, additive tree 0-spanners) [31,44]

and a system of at most 2 log3/2 n collective multiplicative tree 3–spanners [44]. Furthermore,
any weighted graph with genus at most g admits a system of O(

√
gn) collective additive tree

0–spanners [31,44], any weighted graph with tree-width at most k − 1 admits a system of at
most k log2 n collective additive tree 0–spanners [31,44], any weighted graph G with clique-width
at most k admits a system of at most k log3/2 n collective additive tree (2w)–spanners [31], any
weighted c-chordal graph G admits a system of log2 n collective additive tree (2⌊c/2⌋w)–spanners
[31] (where w denotes the maximum edge weight in G).

Collective tree spanners of Unit Disk Graphs (UDGs) (which often model wireless ad hoc
networks) were investigated in [64]. It was shown that every n-vertex UDG G admits a system
T (G) of at most 2 log 3

2

n + 2 spanning trees of G such that, for any two vertices x and y of G,

there exists a tree T in T (G) with dT (x, y) ≤ 3 ·dG(x, y)+12. That is, the distances in any UDG
can be approximately represented by the distances in at most 2 log 3

2

n + 2 of its spanning trees.

Based on this result a new compact and low delay routing labeling scheme was proposed for Unit
Disk Graphs.

Spanners with bounded tree-width. The k-Tree-width t-spanner problem was considered in
[28] and [42]. It was shown that the problem is linear time solvable for every fixed constants t
and k on the class of apex-minor-free graphs [28], which includes all planar graphs and all graphs
of bounded genus, and on the graphs with bounded degree [42].

1.2 Our results and their place in the context of the previous results.

This paper was inspired by few recent results from [25,30,38,39]. Elkin and Peleg in [38], among
other results, described a polynomial time algorithm that, given an n-vertex graph G admitting
a tree t-spanner, constructs a t-spanner of G with O(n log n) edges. Emek and Peleg in [39]
presented the first O(log n)-approximation algorithm for the minimum value of t for the tree

t-spanner problem. They described a polynomial time algorithm that, given an n-vertex graph
G admitting a tree t-spanner, constructs a tree O(t log n)-spanner of G. Later, a simpler and
faster O(log n)-approximation algorithm for the problem was given by Dragan and Köhler [30].
Their result uses a new necessary condition for a graph to have a tree t-spanner: if a graph G has
a tree t-spanner, then G admits a Robertson-Seymour’s tree-decomposition with bags of radius
at most ⌈t/2⌉ in G.

To describe the results of [25] and to elaborate more on the Dragan-Köhler’s approach, we
need to recall definitions of a few graph parameters. They all are based on the notion of tree-
decomposition introduced by Robertson and Seymour in their work on graph minors [61].

A tree-decomposition of a graph G = (V,E) is a pair ({Xi|i ∈ I}, T = (I, F )) where {Xi|i ∈ I}
is a collection of subsets of V , called bags, and T is a tree. The nodes of T are the bags {Xi|i ∈ I}
satisfying the following three conditions:

1.
⋃

i∈I Xi = V ;
2. for each edge uv ∈ E, there is a bag Xi such that u, v ∈ Xi;
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3. for all i, j, k ∈ I, if j is on the path from i to k in T , then Xi
⋂
Xk ⊆ Xj . Equivalently, this

condition could be stated as follows: for all vertices v ∈ V , the set of bags {i ∈ I|v ∈ Xi}
induces a connected subtree Tv of T .

For simplicity we denote a tree-decomposition ({Xi|i ∈ I}, T = (I, F )) of a graph G by T (G).
Tree-decompositions were used to define several graph parameters to measure how close a given

graph is to some known graph class (e.g., to trees or to chordal graphs) where many algorithmic
problems could be solved efficiently. The width of a tree-decomposition T (G) = ({Xi|i ∈ I}, T =
(I, F )) is maxi∈I |Xi| − 1. The tree-width of a graph G, denoted by tw(G), is the minimum width,
over all tree-decompositions T (G) of G [61]. The trees are exactly the graphs with tree-width 1.
The length of a tree-decomposition T (G) of a graph G is λ := maxi∈I maxu,v∈Xi dG(u, v) (i.e.,
each bag Xi has diameter at most λ in G). The tree-length of G, denoted by tl(G), is the minimum
of the length, over all tree-decompositions of G [26]. The chordal graphs are exactly the graphs
with tree-length 1. Note that these two graph parameters are not related to each other. For
instance, a clique on n vertices has tree-length 1 and tree-width n − 1, whereas a cycle on 3n
vertices has tree-width 2 and tree-length n. In [30], yet another graph parameter was introduced,
which is very similar to the notion of tree-length and, as it turns out, is related to the tree

t-spanner problem. The breadth of a tree-decomposition T (G) of a graph G is the minimum
integer r such that for every i ∈ I there is a vertex vi ∈ V (G) with Xi ⊆ Dr(vi, G) (i.e., each
bag Xi can be covered by a disk Dr(vi, G) := {u ∈ V (G)|dG(u, vi) ≤ r} of radius at most r in
G). Note that vertex vi does not need to belong to Xi. The tree-breadth of G, denoted by tb(G),
is the minimum of the breadth, over all tree-decompositions of G. Evidently, for any graph G,
1 ≤ tb(G) ≤ tl(G) ≤ 2tb(G) holds. Hence, if one parameter is bounded by a constant for a graph
G then the other parameter is bounded for G as well.

We say that a family of graphs G is of bounded tree-breadth (of bounded tree-width, of bounded
tree-length) if there is a constant c such that for each graph G from G, tb(G) ≤ c (resp., tw(G) ≤ c,
tl(G) ≤ c).

It was shown in [30] that if a graph G admits a tree t-spanner then its tree-breadth is at most
⌈t/2⌉ and its tree-length is at most t. Furthermore, any graph G with tree-breadth tb(G) ≤ ρ
admits a tree (2ρ⌊log2 n⌋)-spanner that can be constructed in polynomial time. Thus, these two
results gave a new log2 n-approximation algorithm for the tree t-spanner problem on general
(unweighted) graphs (see [30] for details). The algorithm of [30] is conceptually simpler than the
previous O(log n)-approximation algorithm proposed for the problem by Emek and Peleg [39].

Dourisboure et al. in [25] concerned with the construction of additive spanners with few edges
for n-vertex graphs having a tree-decomposition into bags of diameter at most λ, i.e., the tree-
length λ graphs. For such graphs they construct additive 2λ-spanners with O(λn+n log n) edges,
and additive 4λ-spanners with O(λn) edges. Combining these results with the results of [30], we
obtain the following interesting fact (in a sense, turning a multiplicative stretch into an additive
surplus without much increase in the number of edges).

Theorem 1. (combining [25] and [30]) If a graph G admits a (multiplicative) tree t-spanner then
it has an additive 2t-spanner with O(tn + n log n) edges and an additive 4t-spanner with O(tn)
edges, both constructible in polynomial time.

This fact rises few intriguing questions. Does a polynomial time algorithm exist that, given an
n-vertex graph G admitting a (multiplicative) tree t-spanner, constructs an additive O(t)-spanner
of G with O(n) or O(n log n) edges (where the number of edges in the spanner is independent
of t)? Is a result similar to one presented by Elkin and Peleg in [38] possible? Namely, does a
polynomial time algorithm exist that, given an n-vertex graph G admitting a (multiplicative)
tree t-spanner, constructs an additive (t − 1)-spanner3 of G with O(n log n) edges? If we allow

3 Recall that any additive (t− 1)-spanner is a multiplicative t-spanner.
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to use more trees (like in collective tree spanners), does a polynomial time algorithm exist that,
given an n-vertex graph G admitting a (multiplicative) tree t-spanner, constructs a system of
Õ(1) collective additive tree Õ(t)-spanners of G (where Õ is similar to Big-O notation up to a
poly-logarithmic factor)? Note that an interesting question whether a multiplicative tree spanner
can be turned into an additive tree spanner with a slight increase in the stretch is (negatively)
settled already in [39]: if there exist some δ = o(n) and ǫ > 0 and a polynomial time algorithm
that for any graph admitting a tree t-spanner constructs a tree ((6/5 − ǫ)t + δ)-spanner, then
P=NP.

We give some partial answers to these questions in Section 3. We investigate there a more
general question whether a graph with bounded tree-breadth admits a small system of collective
additive tree spanners. We show that any n-vertex graph G has a system of at most log2 n
collective additive tree (2ρ log2 n)-spanners, where ρ ≤ tb(G). This settles also an open question
from [25] whether a graph with tree-length λ admits a small system of collective additive tree
Õ(λ)-spanners.

As a consequence, we obtain that there is a polynomial time algorithm that, given an n-vertex
graph G admitting a (multiplicative) tree t-spanner, constructs:

- a system of at most log2 n collective additive tree O(t log n)-spanners of G (compare with
[30,39] where a multiplicative tree O(t log n)-spanner was constructed for G in polynomial
time; thus, we “have turned” a multiplicative tree O(t log n)-spanner into at most log2 n
collective additive tree O(t log n)-spanners);

- an additive O(t log n)-spanner of G with at most n log2 n edges (compare with Theorem 1).

In Section 4 we generalize the method of Section 3. We define a new notion which combines
both the tree-width and the tree-breadth of a graph.

The k-breadth of a tree-decomposition T (G) = ({Xi|i ∈ I}, T = (I, F )) of a graph G is the
minimum integer r such that for each bag Xi, i ∈ I, there is a set of at most k vertices Ci =
{vij |vij ∈ V (G), j = 1, . . . , k} such that for each u ∈ Xi, we have dG(u,Ci) ≤ r (i.e., each bag Xi

can be covered with at most k disks of G of radius at most r each; Xi ⊆ Dr(v
i
1, G)∪. . .∪Dr(v

i
k, G)).

The k-tree-breadth of a graph G, denoted by tbk(G), is the minimum of the k-breadth, over all
tree-decompositions of G. We say that a family of graphs G is of bounded k-tree-breadth, if there
is a constant c such that for each graph G from G, tbk(G) ≤ c. Clearly, for every graph G,
tb(G) = tb1(G), and tw(G) ≤ k− 1 if and only if tbk(G) = 0. Thus, the notions of the tree-width
and the tree-breadth are particular cases of the k-tree-breadth.

In Section 4, we show that any n-vertex graph G with tbk(G) ≤ ρ has a system of at most
k(1+log2 n) collective additive tree (2ρ(1+log2 n))-spanners. In Section 5, we extend a result from
[30] and show that if a graph G admits a (multiplicative) t-spanner H with tw(H) = k − 1 then
its k-tree-breadth is at most ⌈t/2⌉. As a consequence, we obtain that, for every fixed k, there is a
polynomial time algorithm that, given an n-vertex graph G admitting a (multiplicative) t-spanner
with tree-width at most k − 1, constructs:

- a system of at most k(1 + log2 n) collective additive tree O(t log n)-spanners of G;

- an additive O(t log n)-spanner of G with at most O(kn log n) edges.

We conclude the paper with few open questions.

2 Preliminaries

All graphs occurring in this paper are connected, finite, unweighted, undirected, loopless and
without multiple edges. We call G = (V,E) an n-vertex m-edge graph if |V | = n and |E| = m.
A clique is a set of pairwise adjacent vertices of G. By G[S] we denote a subgraph of G induced
by vertices of S ⊆ V . Let also G \ S be the graph G[V \ S] (which is not necessarily connected).

6



A set S ⊆ V is called a separator of G if the graph G[V \ S] has more than one connected
component, and S is called a balanced separator of G if each connected component of G[V \ S]
has at most |V |/2 vertices. A set C ⊆ V is called a balanced clique-separator of G if C is both a
clique and a balanced separator of G. For a vertex v of G, the sets NG(v) = {w ∈ V |vw ∈ E}
and NG[v] = NG(v) ∪ {v} are called the open neighborhood and the closed neighborhood of v,
respectively.

In a graph G the length of a path from a vertex v to a vertex u is the number of edges in the
path. The distance dG(u, v) between vertices u and v is the length of a shortest path connecting
u and v in G. The diameter in G of a set S ⊆ V is maxx,y∈S dG(x, y) and its radius in G is
minx∈V maxy∈S dG(x, y) (in some papers they are called the weak diameter and the weak radius
to indicate that the distances are measured in G not in G[S]). The disk of G of radius k centered
at vertex v is the set of all vertices at distance at most k to v: Dk(v,G) = {w ∈ V |dG(v,w) ≤ k}.
A disk Dk(v,G) is called a balanced disk-separator of G if the set Dk(v,G) is a balanced separator
of G.

It is easy to see that the t-spanners can equivalently be defined as follows.

Proposition 1. Let G be a connected graph and t be a positive number. A spanning subgraph H
of G is a t-spanner of G if and only if for every edge xy of G, dH(x, y) ≤ t holds.

This proposition implies that the stretch of a spanning subgraph of a graph G is always obtained
on a pair of vertices that form an edge in G. Consequently, throughout this paper, t can be
considered as an integer which is greater than 1 (the case t = 1 is trivial since H must be G
itself).

It is also known that every additive r-spanner of G is a (multiplicative) (r+1)-spanner of G.

Proposition 2. Every additive r-spanner of G is a (multiplicative) (r + 1)-spanner of G. The
converse is generally not true.

3 Collective Additive Tree Spanners and the Tree-Breadth of a Graph

In this section, we show that every n-vertex graph G has a system of at most log2 n collective
additive tree (2ρ log2 n)-spanners, where ρ ≤ tb(G). We also discuss consequences of this result.
Our method is a generalization of techniques used in [32] and [30]. We will assume that n ≥ 4
since any connected graph with at most 3 vertices has an additive tree 1-spanner.

Note that we do not assume here that a tree-decomposition T (G) of breadth ρ is given for G
as part of the input. Our method does not need to know T (G), our algorithm works directly on
G. For a given graph G and an integer ρ, even checking whether G has a tree-decomposition of
breadth ρ could be a hard problem. For example, while graphs with tree-length 1 (as they are
exactly the chordal graphs) can be recognized in linear time, the problem of determining whether
a given graph has tree-length at most λ is NP-complete for every fixed λ > 1 (see [52]).

We will need the following results proven in [30].

Lemma 1 ([30]). Every graph G has a balanced disk-separator Dr(v,G) centered at some vertex
v, where r ≤ tb(G).

Lemma 2 ([30]). For an arbitrary graph G with n vertices and m edges a balanced disk-separator
Dr(v,G) with minimum r can be found in O(nm) time.

3.1 Hierarchical decomposition of a graph with bounded tree-breadth

In this subsection, following [30], we show how to decompose a graph with bounded tree-breadth
and build a hierarchical decomposition tree for it. This hierarchical decomposition tree is used
later for construction of collective additive tree spanners for such a graph.
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Let G = (V,E) be an arbitrary connected n-vertex m-edge graph with a disk-separator
Dr(v,G). Also, let G1, . . . , Gq be the connected components of G[V \ Dr(v,G)]. Denote by
Si := {x ∈ V (Gi)|dG(x,Dr(v,G)) = 1} the neighborhood of Dr(v,G) with respect to Gi. Let also
G+

i be the graph obtained from component Gi by adding a vertex ci (representative of Dr(v,G))
and making it adjacent to all vertices of Si, i.e., for a vertex x ∈ V (Gi), cix ∈ E(G+

i ) if and only if
there is a vertex xD ∈ Dr(v,G) with xxD ∈ E(G). See Fig. 1 for an illustration. In what follows,
we will call vertex ci a meta vertex representing disk Dr(v,G) in graph G+

i . Given a graph G
and its disk-separator Dr(v,G), the graphs G+

1 , . . . , G
+
q can be constructed in total time O(m).

Furthermore, the total number of edges in the graphs G+
1 , . . . , G

+
q does not exceed the number

of edges in G, and the total number of vertices (including q meta vertices) in those graphs does
not exceed the number of vertices in G[V \Dr(v,G)] plus q.

Fig. 1. A graph G with a disk-separator Dr(v,G) and the corresponding graphs
G+

1 , . . . , G
+
4 obtained from G. c1, . . . , c4 are meta vertices representing the disk Dr(v,G)

in the corresponding graphs.

Denote by G/e the graph obtained from G by contracting its edge e. Recall that edge e
contraction is an operation which removes e from G while simultaneously merging together the
two vertices e previously connected. If a contraction results in multiple edges, we delete duplicates
of an edge to stay within the class of simple graphs. The operation may be performed on a set
of edges by contracting each edge (in any order). The following lemma guarantees that the tree-
breadths of the graphs G+

i , i = 1, . . . , q, are no larger than the tree-breadth of G.

Lemma 3 ([30]). For any graph G and its edge e, tb(G) ≤ ρ implies tb(G/e) ≤ ρ. Consequently,

for any graph G with tb(G) ≤ ρ, tb(G+
i ) ≤ ρ holds for each i = 1, . . . , q.

Clearly, one can get G+
i from G by repeatedly contracting (in any order) edges of G that are

not incident to vertices of Gi. In other words, G+
i is a minor of G. Recall that a graph G′ is a

minor of G if G′ can be obtained from G by contracting some edges, deleting some edges, and
deleting some isolated vertices. The order in which a sequence of such contractions and deletions
is performed on G does not affect the resulting graph G′.

Let G = (V,E) be a connected n-vertex, m-edge graph and assume that tb(G) ≤ ρ. Lemma
1 and Lemma 2 guarantee that G has a balanced disk-separator Dr(v,G) with r ≤ ρ, which can
be found in O(nm) time by an algorithm that works directly on graph G and does not require
construction of a tree-decomposition of G of breadth ≤ ρ. Using these and Lemma 3, we can
build a (rooted) hierarchical tree H(G) for G as follows. If G is a connected graph with at most
5 vertices, then H(G) is one node tree with root node (V (G), G). Otherwise, find a balanced
disk-separator Dr(v,G) in G with minimum r (see Lemma 2) and construct the corresponding
graphs G+

1 , G
+
2 , . . . , G

+
q . For each graph G+

i (i = 1, . . . , q) (by Lemma 3, tb(G+
i ) ≤ ρ), construct

a hierarchical tree H(G+
i ) recursively and build H(G) by taking the pair (Dr(v,G), G) to be the

root and connecting the root of each tree H(G+
i ) as a child of (Dr(v,G), G).
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The depth of this tree H(G) is the smallest integer k such that

n

2k
+

1

2k−1
+ . . .+

1

2
+ 1 ≤ 5,

that is, the depth is at most log2 n− 1.
It is also easy to see that, given a graph G with n vertices and m edges, a hierarchical tree

H(G) can be constructed in O(nm log2 n) total time. There are at most O(log n) levels in H(G),
and one needs to do at most O(nm log n) operations per level since the total number of edges in
the graphs of each level is at most m and the total number of vertices in those graphs can not
exceed O(n log n).

For an internal (i.e., non-leaf) node Y ofH(G), since it is associated with a pair (Dr′(v
′, G′), G′),

where r′ ≤ ρ, G′ is a minor of G and v′ is the center of disk Dr′(v
′, G′) of G′, it will be convenient,

in what follows, to denote G′ by G(↓ Y ), v′ by c(Y ), r′ by r(Y ), and Dr′(v
′, G′) by Y itself.

Thus, (Dr′(v
′, G′), G′) = (Dr(Y )(c(Y ), G(↓ Y )), G(↓ Y )) = (Y,G(↓ Y )) in these notations, and we

identify node Y of H(G) with the set Y = Dr(Y )(c(Y ), G(↓ Y )) and associate with this node also
the graph G(↓ Y ). See Fig. 2 for an illustration. Each leaf Y of H(G), since it corresponds to
a pair (V (G′), G′), we identify with the set Y = V (G′) and use, for a convenience, the notation
G(↓ Y ) for G′.

Fig. 2. a) A graph G and its balanced disk-separator D1(13, G). b) A hierarchical tree H(G) of
G. We have G = G(↓ Y 0), Y 0 = D1(13, G). Meta vertices are shown circled, disk centers are
shown in bold. c) The graph G(↓ Y 1) with its balanced disk-separator D1(23, G(↓ Y 1)) = Y 1.
G(↓ Y 1) is a minor of G(↓ Y 0). d) The graph G(↓ Y 2), a minor of G(↓ Y 1) and of G(↓ Y 0).
Y 2 = V (G(↓ Y 2)) is a leaf of H(G).

If now (Y 0, Y 1, . . . , Y h) is the path of H(G) connecting the root Y 0 of H(G) with a node Y h,
then the vertex set of the graph G(↓ Y h) consists of some (original) vertices of G plus at most
h meta vertices representing the disks Dr(Y )(c(Y

i), G(↓ Y i)) = Y i, i = 0, 1, . . . , h − 1. Note also
that each (original) vertex of G belongs to exactly one node of H(G).
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3.2 Construction of collective additive tree spanners

Unfortunately, the class of graphs of bounded tree-breadth is not hereditary, i.e., induced sub-
graphs of a graph with tree-breath ρ are not necessarily of tree-breadth at most ρ (for example, a
cycle of length ℓ with one extra vertex adjacent to each vertex of the cycle has tree-breadth 1, but
the cycle itself has tree-breadth ℓ/3). Thus, the method presented in [32], for constructing collec-
tive additive tree spanners for hereditary classes of graphs admitting balanced disk-separators,
cannot be applied directly to the graphs of bounded tree-breadth. Nevertheless, we will show
that, with the help of Lemma 3, the notion of hierarchical tree from previous subsection and a
careful analysis of distance changes (see Lemma 4), it is possible to generalize the method of [32]
and construct in polynomial time for every n-vertex graph G a system of at most log2 n collective
additive tree (2ρ log2 n)-spanners, where ρ ≤ tb(G). Unavoidable presence of meta vertices in
the graphs resulting from a hierarchical decomposition of the original graph G complicates the
construction and the analysis. Recall that, in [32], it was shown that if every induced subgraph
of a graph G enjoys a balanced disk-separator with radius at most r, then G admits a system of
at most log2 n collective additive tree 2r-spanners.

Let G = (V,E) be a connected n-vertex, m-edge graph and assume that tb(G) ≤ ρ. Let
H(G) be a hierarchical tree of G. Consider an arbitrary internal node Y h of H(G), and let
(Y 0, Y 1, . . . , Y h) be the path of H(G) connecting the root Y 0 of H(G) with Y h. Let Ĝ(↓Y j) be
the graph obtained from G(↓Y j) by removing all its meta vertices (note that Ĝ(↓Y j) may be
disconnected).

Lemma 4. For any vertex z from Y h∩V (G) there exists an index i ∈ {0, 1, . . . , h} such that the
vertices z and c(Y i) can be connected in the graph Ĝ(↓ Y i) by a path of length at most ρ(h+ 1).
In particular, dG(z, c(Y

i)) ≤ ρ(h+ 1) holds.

Proof. Set Gh := G(↓ Y h), c := c(Y h), and let SPGh
c,z be a shortest path of Gh connecting vertices

c and z. We know that this path has at most r(Y h) ≤ ρ edges. If SPGh
c,z does not contain any

meta vertices, then this path is a path of Ĝ(↓ Y h) and of G and therefore dG(c, z) ≤ ρ holds.
Assume now that SPGh

c,z does contain meta vertices and let µ′ be the closest to z meta vertex

in SPGh
c,z . See Fig. 3 for an illustration. Let SPGh

c,z = (c, . . . , a′, µ′, b′, . . . , z). By construction of

H(G), meta vertex µ′ was created at some earlier recursive step to represent disk Y i′ of graph

Gi′ := G(↓ Y i′) for some i′ ∈ {0, . . . , h − 1}. Hence, there is a path P
Gi′

c′,z = (c′, . . . , b′, . . . , z) of

length at most 2ρ in Gi′ with c′ := c(Y i′). Again, if P
Gi′

c′,z does not contain any meta vertices, then

this path is a path of Ĝ(↓ Y i′) and of G and therefore dG(c
′, z) ≤ 2ρ holds. If P

Gi′

c′,z does contain

meta vertices then again, “unfolding” a meta vertex µ′′ of P
Gi′

c′,z closest to z, we obtain a path

P
Gi′′

c′′,z of length at most 3ρ in Gi′′ := G(↓ Y i′′) with c′′ := c(Y i′′) for some i′′ ∈ {0, . . . , i′ − 1}.
By continuing “unfolding” this way meta vertices closest to z, after at most h steps, we will

arrive at the situation when, for some index i∗ ∈ {0, 1, . . . , h}, a path of length at most ρ(h+ 1)
will connect vertices z and c(Y i∗) in the graph Ĝ(↓ Y i∗). ⊓⊔

Consider two arbitrary vertices x and y of G, and let S(x) and S(y) be the nodes of H(G)
containing x and y, respectively. Let also NCAH(G)(S(x), S(y)) be the nearest common ancestor

of nodes S(x) and S(y) in H(G) and (Y 0, Y 1, . . . , Y h) be the path of H(G) connecting the root
Y 0 of H(G) with NCAH(G)(S(x), S(y)) = Y h (in other words, Y 0, Y 1, . . . , Y h are the common
ancestors of S(x) and S(y)).

Lemma 5. Any path PG
x,y connecting vertices x and y in G contains a vertex from Y 0 ∪ Y 1 ∪

. . . ∪ Y h.
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Fig. 3. Illustration to the proof of Lemma 4: “unfolding” meta vertices.

Let SPG
x,y be a shortest path of G connecting vertices x and y, and let Y i be the node of

the path (Y 0, Y 1, . . . , Y h) with the smallest index such that SPG
x,y

⋂
Y i 6= ∅ in G. The following

lemma holds.

Lemma 6. For each j = 0, . . . , i, we have dG(x, y) = dG′(x, y), where G′ := Ĝ(↓Y j).

Let now Bi
1, . . . , B

i
pi be the nodes at depth i of the tree H(G). For each node Bi

j that is not

a leaf of H(G), consider its (central) vertex cij := c(Bi
j). If c

i
j is an original vertex of G (not a

meta vertex created during the construction of H(G)), then define a connected graph Gi
j obtained

from G(↓ Bi
j) by removing all its meta vertices. If removal of those meta vertices produced few

connected components, choose as Gi
j that component which contains the vertex cij . Denote by T i

j

a BFS–tree of graph Gi
j rooted at vertex cij of Bi

j. If B
i
j is a leaf of H(G), then Bi

j has at most 5

vertices. In this case, remove all meta vertices from G(↓ Bi
j) and for each connected component

of the resulting graph construct an additive tree spanner with optimal surplus ≤ 3. Denote the
resulting subtree (forest) by T i

j .

The trees T i
j (i = 0, 1, . . . , depth(H(G)), j = 1, 2, . . . , pi), obtained this way, are called local

subtrees of G. Clearly, the construction of these local subtrees can be incorporated into the pro-
cedure of constructing hierarchical tree H(G) of G and will not increase the overall O(nm log2 n)
run-time (see Subsection 3.1).

Lemma 7. For any two vertices x, y ∈ V (G), there exists a local subtree T such that dT (x, y) ≤
dG(x, y) + 2ρ log2 n− 1.

Proof. We know, by Lemma 6, that a shortest path SPG
x,y, intersecting Y i and not intersecting

any Y l (l < i), lies entirely in G′ := Ĝ(↓ Y i). Thus, dG(x, y) = dG′(x, y). If Y i is a leaf of H(G)
then for a local subtree T ′ (it could be a forest) of G constructed for G′ the following holds:
dT ′(x, y) ≤ dG′(x, y) + 3 = dG(x, y) + 3 ≤ dG(x, y) + 2ρ log2 n− 1 (since n ≥ 4 and ρ ≥ 1).

Assume now that Y i is an internal node of H(G). We have i ≤ log2 n − 2, since the depth
of H(G) is at most log2 n − 1. Let z ∈ Y i be a vertex on the shortest path SPG

x,y. By Lemma
4, there exists an index j ∈ {0, 1, . . . , i} such that the vertices z and c(Y j) can be connected in
the graph Ĝ(↓ Y j) by a path of length at most ρ(i + 1). Set G′′ := Ĝ(↓ Y j) and c := c(Y j).
By Lemma 6, dG(x, y) = dG′(x, y) = dG′′(x, y). Let T ′′ be the local tree constructed for graph
G′′ = Ĝ(↓ Y j), i.e., a BFS–tree of a connected component of the graph G′′ = Ĝ(↓ Y j) and rooted
at vertex c = c(Y j).

We have dT ′′(x, c) = dG′′(x, c) and dT ′′(y, c) = dG′′(y, c). By the triangle inequality, dT ′′(x, c) =
dG′′(x, c) ≤ dG′′(x, z) + dG′′(z, c) and dT ′′(y, c) = dG′′(y, c) ≤ dG′′(y, z) + dG′′(z, c). That is,
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dT ′′(x, y) ≤ dT ′′(x, c) + dT ′′(y, c) ≤ dG′′(x, z) + dG′′(y, z) + 2dG′′(z, c) = dG′′(x, y) + 2dG′′(z, c).
Now, using Lemma 6 and inequality dG′′(z, c) ≤ ρ(i + 1) ≤ ρ(log2 n − 1), we get dT ′′(x, y) ≤
dG′′(x, y) + 2dG′′(z, c) ≤ dG(x, y) + 2ρ(log2 n− 1). ⊓⊔

This lemma implies two important results. Let G be a graph with n vertices and m edges
having tb(G) ≤ ρ. Also, let H(G) be its hierarchical tree and LT (G) be the family of all its local
subtrees (defined above). Consider a graph H obtained by taking the union of all local subtrees
of G (by putting all of them together), i.e.,

H :=
⋃

{T i
j |T i

j ∈ LT (G)} = (V,∪{E(T i
j )|T i

j ∈ LT (G)}).

Clearly, H is a spanning subgraph of G, constructible in O(nm log2 n) total time, and, for any
two vertices x and y of G, dH(x, y) ≤ dG(x, y) + 2ρ log2 n− 1 holds. Also, since for every level i
(i = 0, 1, . . . , depth(H(G))) of hierarchical tree H(G), the corresponding local subtrees T i

1, . . . , T
i
pi

are pairwise vertex-disjoint, their union has at most n− 1 edges. Therefore, H cannot have more
than (n− 1) log2 n edges in total. Thus, we have proven the following result.

Theorem 2. Every graph G with n vertices and tb(G) ≤ ρ admits an additive (2ρ log2 n)–spanner
with at most n log2 n edges. Furthermore, such a sparse additive spanner of G can be constructed
in polynomial time.

Instead of taking the union of all local subtrees of G, one can fix i (i ∈ {0, 1, . . . , depth(H(G))})
and consider separately the union of only local subtrees T i

1, . . . , T
i
pi , corresponding to the level i of

the hierarchical tree H(G), and then extend in linear O(m) time that forest to a spanning tree T i

of G (using, for example, a variant of the Kruskal’s Spanning Tree algorithm for the unweighted
graphs). We call this tree T i the spanning tree of G corresponding to the level i of the hierarchical
tree H(G). In this way we can obtain at most log2 n spanning trees for G, one for each level i
of H(G). Denote the collection of those spanning trees by T (G). Thus, we obtain the following
theorem.

Theorem 3. Every graph G with n vertices and tb(G) ≤ ρ admits a system T (G) of at most
log2 n collective additive tree (2ρ log2 n)–spanners. Furthermore, such a system of collective addi-
tive tree spanners of G can be constructed in polynomial time.

3.3 Additive spanners for graphs admitting (multiplicative) tree t–spanners

Now we give two implications of the above results for the class of tree t–spanner admissible graphs.
In [30], the following important (“bridging”) lemma was proven.

Lemma 8 ([30]). If a graph G admits a tree t-spanner then its tree-breadth is at most ⌈t/2⌉.
Note that the tree-breadth bounded by ⌈t/2⌉ provides only a necessary condition for a graph

to have a multiplicative tree t-spanner. There are (chordal) graphs which have tree-breadth 1
but any multiplicative tree t-spanner of them has t = Ω(log n) [30]. Furthermore, a cycle on 3n
vertices has tree-breadth n but admits a system of 2 collective additive tree 0-spanners.

Combining Lemma 8 with Theorem 2 and Theorem 3, we deduce the following results.

Theorem 4. Let G be a graph with n vertices and m edges having a (multiplicative) tree t–
spanner. Then, G admits an additive (2⌈t/2⌉ log2 n)–spanner with at most n log2 n edges con-
structible in O(nm log2 n) time.

Theorem 5. Let G be a graph with n vertices and m edges having a (multiplicative) tree t–
spanner. Then, G admits a system T (G) of at most log2 n collective additive tree (2⌈t/2⌉ log2 n)–
spanners constructible in O(nm log2 n) time.
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4 Collective Additive Tree Spanners of Graphs with Bounded
k-Tree-Breadth, k ≥ 2

In this section, we extend the approach of Section 3 and show that any n-vertex graph G with
tbk(G) ≤ ρ has a system of at most k(1+ log2 n) collective additive tree (2ρ(1+ log2 n))-spanners
constructible in polynomial time for every fixed k. We will assume that n > k, since any graph
with n vertices has a system of n−1 collective additive tree 0-spanners (consider n−1 BFS-trees
rooted at different vertices).

4.1 Balanced separators for graphs with bounded k-tree-breadth

We will need the following balanced clique-separator result for chordal graphs. Recall that a graph
is chordal if every its induced cycle has length three.

Lemma 9 ([43]). Every chordal graph G with n vertices and m edges contains a maximal clique
C such that if the vertices in C are deleted from G, every connected component in the graph
induced by any remaining vertices is of size at most n/2. Such a balanced clique-separator C of a
connected chordal graph can be found in O(m) time.

We say that a graph G = (V,E) with |V | ≥ k has a balanced Dk
r -separator if there exists

a collection of k disks Dr(v1, G),Dr(v2, G), . . . ,Dr(vk, G) in G, centered at (different) vertices
v1, v2, . . . , vk and each of radius r, such that the union of those disks Dk

r :=
⋃k

i=1Dr(vi, G) forms
a balanced separator of G, i.e., each connected component of G[V \Dk

r ] has at most |V |/2 vertices.
The following result generalizes Lemma 1.

Lemma 10. Every graph G with at least k vertices and tbk(G) ≤ ρ has a balancedDk
ρ -separator.

Proof. The proof of this lemma follows from acyclic hypergraph theory. First we review some
necessary definitions and an important result characterizing acyclic hypergraphs. Recall that a
hypergraph H is a pair H = (V, E) where V is a set of vertices and E is a set of non-empty subsets
of V called hyperedges. For these and other hypergraph notions see [11].

Let H = (V, E) be a hypergraph with the vertex set V and the hyperedge set E . For every
vertex v ∈ V , let E(v) = {e ∈ E |v ∈ e}. The 2–section graph 2SEC(H) of a hypergraph H has
V as its vertex set and two distinct vertices are adjacent in 2SEC(H) if and only if they are
contained in a common hyperedge of H. A hypergraph H is called conformal if every clique of
2SEC(H) is contained in a hyperedge e ∈ E , and a hypergraph H is called acyclic if there is a
tree T with node set E such that for all vertices v ∈ V , E(v) induces a subtree Tv of T . It is a
well-known fact (see, e.g., [3,10,11]) that a hypergraph H is acyclic if and only if H is conformal
and 2SEC(H) of H is a chordal graph.

Let now G = (V,E) be a graph with tbk(G) = ρ and T (G) = ({Xi|i ∈ I}, T = (I, F )) be its
tree-decomposition of k-breadth ρ. Evidently, the third condition of tree-decompositions can be
restated as follows: the hypergraph H = (V (G), {Xi|i ∈ I}) is an acyclic hypergraph. Since each
edge of G is contained in at least one bag of T (G), the 2–section graph G∗ := 2SEC(H) of H is a
chordal supergraph of the graph G (each edge of G is an edge of G∗, but G∗ may have some extra
edges between non-adjacent vertices of G contained in a common bag of T (G)). By Lemma 9,
the chordal graph G∗ contains a balanced clique-separator C ⊆ V (G). By conformality of H, C
must be contained in a bag of T (G). From the definition of k-breadth, there must exist k vertices
v1, v2, . . . , vk such that C ⊆ Dk

ρ , where Dk
ρ = Dρ(v1, G) ∪ . . . ∪Dρ(vk, G). As the removal of the

vertices of C from G∗ leaves no connected component in G∗[V \C] with more than |V |/2 vertices
and since G∗ is a supergraph of G, clearly, the removal of the vertices of Dk

ρ from G leaves no

connected component in G[V \Dk
ρ ] with more than |V |/2 vertices. ⊓⊔
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Again, like in Section 3, we do not assume that a tree-decomposition T (G) of k-breadth ρ is
given for G as part of the input. Our method does not need to know T (G). For a given graph G,
integers k ≥ 1 and ρ ≥ 0, even checking whether G has a tree-decomposition of k-breadth ρ is a
hard problem (as tbk(G) = 0 if and only if tw(G) ≤ k − 1).

Let G be an arbitrary connected n-vertex m-edge graph. In [30], an algorithm was described
which, given G and its arbitrary fixed vertex v, finds in O(m) time a balanced disk separator
Dr(v,G) of G centered at v and with minimum r. We can use this algorithm as a subroutine
to find for G in O(nkm) time a balanced Dk

r -separator with minimum r. Given arbitrary k
vertices v1, v2, . . . , vk of G, we can add a new dummy vertex x to G and make it adjacent to
only v1, v2, . . . , vk in G. Denote the resulting graph by G + x. Then, a balanced disk separator
Dr+1(x,G + x) of G + x with minimum r + 1 gives a balanced separator of G of the form
Dr(v1, G) ∪ . . . ∪Dr(vk, G) (for particular disk centers v1, v2, . . . , vk) with minimum r. Iterating
over all k vertices of G, we can find a balanced Dk

r -separator of G with the smallest (absolute
minimum) radius r. Thus, we have the following result.

Proposition 3. Let k be a positive integer (assumed to be small). For an arbitrary graph G with
n ≥ k vertices and m edges, a balanced Dk

r -separator with the smallest radius r can be found in
O(nkm) time.

4.2 Decomposition of a graph with bounded k-tree-breadth

Let G = (V,E) be an arbitrary connected graph with n vertices and m edges and with a balanced
Dk

r -separator, where Dk
r =

⋃k
j=1Dr(vj , G). Note that some disks in {Dr(v1, G), . . . ,Dr(vk, G)}

may overlap. In what follows, we will partition Dk
r =

⋃k
j=1Dr(vj , G) into k sets D1, . . . ,Dk such

that no two of them intersect and each Dj , j = 1, . . . , k, contains at least one vertex vj and
induces a connected subgraph of G[Dr(vj , G)]. Create a graph G + s by adding a new dummy
vertex s to G and making it adjacent to only v1, v2, . . . , vk in G. Let T be a BFS-tree of G + s
started at vertex s and T ′ be a subtree of T formed by vertices {v ∈ V (G+s)|dT (s, v) ≤ r+1} and
rooted at s. Let also T (v1), . . . , T (vk) be the subtrees of T

′ \{s} rooted at v1, . . . , vk, respectively.
Clearly, each T (vj), j = 1, . . . , k, is a subtree (not necessarily spanning) of G[Dr(vj , G)] and
Dk

r =
⋃k

j=1 V (T (vj)). Set now Dj := V (T (vj)), j = 1, . . . , k.

Let G1, G2, . . . , Gq be the connected components of G[V \ Dk
r ]. Denote by Sj

i = {v ∈
V (Gi)|dG(v,Dj) = 1}, i = 1, . . . , q, j = 1, . . . , k, the neighborhood of Dj in Gi. Also, let G+

i

be the graph obtained from component Gi by adding one meta vertex cji for each disk Dr(vj , G)

(a representative of Dr(vj , G)), j = 1, . . . k, and making it adjacent to all vertices of Sj
i , i.e., for

a vertex x ∈ V (Gi), cjix ∈ E(G+
i ) if and only if there is a vertex xD ∈ Dj ⊆ Dr(vj , G) with

xxD ∈ E(G). If Sj
i is empty for some j, then vertex cji is not added to G+

i . Also, add an edge

between any two representatives cji and cli if vertices vj and vl are connected in G[V \V (Gi)]. See
Fig. 4 for an illustration.

Given an n-vertex m-edge graph G and its balanced Dk
r -separator, the graphs G+

1 , . . . , G
+
q

can be constructed in total time O(kqm). Furthermore, the total number of edges in graphs
G+

1 , . . . , G
+
q does not exceed m+ qk2, and the total number of vertices in those graphs does not

exceed the number of vertices in G[V \Dk
r ] plus qk.

Note that G+
i is a minor of G and can be obtained from G by a sequence of edge contractions

in the following way. First contract all edges (in any order) that are incident to V (Gi′), for all
i′ = 1, . . . , q, i′ 6= i. Then, for each j = 1, . . . , k, contract (all edges of) connected subgraph G[Dj ]

of G to get meta vertex cji representing the disk Dr(vj , G) in G+
i .

Let again G/e be the graph obtained from G by contracting edge e. We have the following
analog of Lemma 3.
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Fig. 4. A graphG with a balancedD3
r -separator and the corresponding graphsG+

1 , . . . , G
+
4

obtained from G. Each G+
i has three meta vertices representing the three disks.

Lemma 11. For any graph G and its edge e, tbk(G) ≤ ρ implies tbk(G/e) ≤ ρ. Consequently,

for any graph G with tbk(G) ≤ ρ, tbk(G
+
i ) ≤ ρ holds for i = 1, . . . , q.

Proof. Let T (G) = ({Xi|i ∈ I}, T = (I, F )) be a tree-decomposition of G with k-breadth ρ. Let
e = xy be an arbitrary edge of G. We can obtain a tree-decomposition T (G/e) of the graph G/e

by replacing in each bag Xi, i ∈ I, vertices x and y with a new vertex x′ representing them (if
some bag A contained both x and y, only one copy of x′ is kept). Evidently, the first and the
second conditions of tree-decompositions are fulfilled for T (G/e). Furthermore, the topology (the
tree T = (I, F )) of the tree-decomposition did not change. Still, for any vertex v 6= x′ of G/e, the
bags of T (G/e) containing v form a subtree in T (G/e). Since vertices x and y were adjacent in G,
there was a bag A of T (G) containing both those vertices. Hence, a subtree of T (G/e) formed by
bags of T (G/e) containing vertex x′ is nothing else but the union of two subtrees (one for x and
one for y) of T (G) sharing at least one common bag A. Also, contracting an edge can only reduce
the distances in a graph. Hence, still, for each bag B of T (G/e), there must exist corresponding

vertices v1, . . . , vk in G/e with B ⊆ Dρ(v1, G/e)∪ . . .∪Dρ(vk, G/e). Thus, tbk(G/e) ≤ ρ. Since G+
i

can be obtained from G by a sequence of edge contractions, we also have tbk(G
+
i ) ≤ ρ. ⊓⊔

4.3 Construction of a hierarchical tree

Here we show how a hierarchical tree for a graph with bounded k-tree-breadth is built.

Let G = (V,E) be a connected n-vertex, m-edges graph with tbk(G) ≤ ρ and n ≥ k. Lemma 10
guaranties that G has a balanced Dk

r -separator with r ≤ ρ. Proposition 3 says that such a
balanced Dk

r -separator of G can be found in O(nkm) time by an algorithm that works directly
on the graph G and does not require construction of a tree-decomposition of G with k-breadth
≤ ρ. Using these and Lemma 11, we can build a rooted hierarchical-tree H(G) for G, which is
constructed as follows. If G is a connected graph with at most 2k + 1 vertices, then H(G) is one
node tree with root node (V (G), G). It is known [45] that any graph with p ≥ 2 vertices has a
dominating set of size ⌊p/2⌋, i.e., all vertices of it can be covered by ⌊p/2⌋ disks of radius one.
Hence, in our case, G with at most 2k + 1 vertices can be covered by k disks of radius one each,
i.e., there are k vertices v1, . . . , vk such that V (G) = Dr(v1, G) ∪ . . . ∪Dr(vk, G) for r = 1 ≤ ρ. If
G is a connected graph with more than 2k+1 vertices, find a balanced Dk

r -separator of minimum
radius r in O(nkm) time and construct the corresponding graphs G+

1 , . . . , G
+
q . For each graph

G+
i , i ∈ {1, . . . , q}, (by Lemma 11, tbk(G

+
i ) ≤ ρ) construct a hierarchical tree H(G+

i ) recursively
and build H(G) by taking the pair (Dk

r , G) to be the root and connecting the root of each tree
H(G+

i ) as a child of (Dk
r , G).
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The depth of this tree H(G) is the smallest integer p such that

n

2p
+ k(

1

2p−1
+ . . .+

1

2
+ 1) ≤ 2k + 1,

that is, the depth is at most log2 n. It is also not hard to see that, given a graph G with n vertices
and m edges, a hierarchical tree H(G) can be constructed in O((kn)k+2 logk+1 n) total time.
There are at most O(log n) levels in H(G), and one needs to do at most O((n + kn log n)k(m +
k2n log n)) ≤ O((kn)k+2 logk n) operations per level since the total number of edges in the graphs
of each level is at most O(m+k2n log n) and the total number of vertices in those graphs can not
exceed O(n+ kn log n).

For nodes of H(G), we use the same notations as in Section 3. For a node Y of H(G), since it
is associated with a pair (Dk

r′
, G′), where r′ ≤ ρ, G′ is a minor of G and Dk

r′
= Dr′(v

′
1, G

′)∪ . . .∪
Dr′(v

′
1, G

′), it is convenient to denote G′ by G(↓ Y ), {v′1, . . . , v′k} by c(Y ) = {c1(Y ), . . . , ck(Y )},
r′ by r(Y ), and Dk

r′
by Y itself. Thus, (Dk

r′
, G′) = (

⋃k
l=1Dr(Y )(cl(Y ), G(↓ Y )), G(↓ Y )) = (Y,G(↓

Y )) in these notations, and we identify node Y of H(G) with the set
⋃k

l=1Dr(Y )(cl(Y ), G(↓ Y ))

and associate with this node also the graph G(↓ Y ). If now (Y 0, Y 1, . . . , Y h) is the path of H(G)
connecting the root Y 0 of H(G) with a node Y h, then the vertex set of the graph G(↓ Y h)
consists of some (original) vertices of G plus at most kh meta vertices representing the disks
Dr(Y )(c1(Y

i), G(↓ Y i)), . . . ,Dr(Y )(ck(Y
i), G(↓ Y i)) of Y i, i = 0, 1, . . . , h − 1. Note also that each

(original) vertex of G belongs to exactly one node of H(G).

4.4 Construction of collective additive tree spanners

Let G = (V,E) be a connected n-vertex,m-edge graph and assume that tbk(G) ≤ ρ and n ≥ k. Let
H(G) be a hierarchical tree of G. Consider an arbitrary node Y h ofH(G), and let (Y 0, Y 1, . . . , Y h)
be the path of H(G) connecting the root Y 0 of H(G) with Y h. Let Ĝ(↓Y j) be the graph obtained
from G(↓Y j) by removing all its meta vertices (note that Ĝ(↓Y j) may be disconnected and that
all meta vertices of G(↓Y j) come from previous levels of H(G)). We have the following analog of
Lemma 4.

Lemma 12. For any vertex z from Y h ∩ V (G) there exists an index i ∈ {0, 1, . . . , h} such that
the vertices z and cl(Y

i), for some l ∈ {1, . . . , k} can be connected in the graph Ĝ(↓ Y i) by a path
of length at most ρ(h+ 1). In particular, dG(z, cl(Y

i)) ≤ ρ(h+ 1) holds.

Proof. The proof is similar to the proof of Lemma 4 of Section 3. Set Gh := G(↓ Y h) and
c := cl(Y

h), where z ∈ Dl ⊆ Dr(Y h)(cl(Y
h), Gh) (for the definition of set Dl see the first paragraph

of Subsection 4.2). Let SPGh
c,z be a shortest path of Gh connecting vertices c and z. We know that

this path has at most r(Y h) ≤ ρ edges. If SPGh
c,z does not contain any meta vertices, then this

path is a path of Ĝ(↓ Y h) and of G and therefore dG(c, z) ≤ ρ holds.

Assume now that SPGh
c,z does contain meta vertices and let µ′ be the closest to z meta vertex

in SPGh
c,z (consult with Fig. 3). Let SPGh

c,z = (c, . . . , a′, µ′, b′, . . . , z). By construction of H(G),

meta vertex µ′ was created at some earlier recursive step to represent one disk of Y i′ of graph

Gi′ := G(↓ Y i′) for some i′ ∈ {0, . . . , h − 1}. Hence, there is a path P
Gi′

c′,z = (c′, . . . , b′, . . . , z) of

length at most 2ρ in Gi′ with c′ := cl′(Y
i′) for some l′ ∈ {1, . . . , k}. Again, if PGi′

c′,z does not contain

any meta vertices, then this path is a path of Ĝ(↓ Y i′) and of G and therefore dG(c
′, z) ≤ 2ρ

holds. If P
Gi′

c′,z does contain meta vertices then again, “unfolding” a meta vertex µ′′ of P
Gi′

c′,z closest

to z, we obtain a path P
Gi′′

c′′,z of length at most 3ρ in Gi′′ := G(↓ Y i′′) with c′′ := cl′′(Y
i′′) for some

i′′ ∈ {0, . . . , i′ − 1} and l′′ ∈ {1, . . . , k}.
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We continue “unfolding” this way meta vertices closest to z. Eventually, after at most h steps,
we will arrive at the situation when, for some index i∗ ∈ {0, 1, . . . , h}, a path of length at most
ρ(h+1) will connect vertices z and cl∗(Y

i∗), for some l∗ ∈ {1, . . . , k}, in the graph Ĝ(↓ Y i∗). ⊓⊔
Let Bi

1, . . . , B
i
pi be the nodes at depth i of the tree H(G). Assume Bi

j =
⋃k

l=1Dr(c
i
j(l), G(↓

Bi
j)), where r := r(Bi

j). Denote k central vertices of Bi
j by Ci

j = {cij(1), cij(2), . . . , cij(k)}. For
each node Bi

j, consider its (central) vertex cij(l) (l ∈ {1, . . . , k}). If cij(l) is an original vertex of
G (not a meta vertex created during the construction of H(G)), then define a connected graph
Gi

j(l) obtained from G(↓ Bi
j) by removing all its meta vertices. If removal of those meta vertices

produced few connected components, choose as Gi
j(l) that component which contains the vertex

cij(l). Denote by T i
j (l) a BFS–tree of graph Gi

j(l) rooted at vertex cij(l) of B
i
j .

The trees T i
j (l) (i = 0, 1, . . . , depth(H(G)), j = 1, 2, . . . , pi, l = 1, 2, . . . , k), obtained this way,

are called local subtrees of G. Clearly, the construction of these local subtrees can be incorporated
into the procedure of constructing hierarchical tree H(G) of G and will not increase the overall
O((kn)k+2 logk+1 n) run-time (see Subsection 4.3).

Since Lemma 5 and Lemma 6 hold for G, similarly to the proof of Lemma 7, one can prove
its analog for graphs with bounded k-tree-breadth.

Lemma 13. For any two vertices x, y ∈ V (G), there exists a local subtree T such that dT (x, y) ≤
dG(x, y) + 2ρ(1 + log2 n).

This lemma implies the following two results. Let G be a graph with n vertices and m edges
having tbk(G) ≤ ρ. Let also H(G) be its hierarchical tree and LT (G) be the family of all its local
subtrees (defined above). Consider a graph H obtained by taking the union of all local subtrees
of G (by putting all of them together). Clearly, H is a spanning subgraph of G, constructible
in polynomial time for every fixed k. We have dH(x, y) ≤ dG(x, y) + 2ρ(1 + log2 n) for any two
vertices x and y of G. Also, since for every level i (i = 0, 1, . . . , depth(H(G))) of hierarchical tree
H(G), the corresponding local subtrees T i

1(l), . . . , T
i
pi(l) for each fixed index l ∈ {1, . . . , k} are

pairwise vertex-disjoint, their union has at most n−1 edges. Therefore, H cannot have more than
k(n− 1)(1 + log2 n) edges in total. Thus, we have the following result.

Theorem 6. Every graph G with n vertices and tbk(G) ≤ ρ admits an additive (2ρ(1+ log2 n))–
spanner with at most O(kn log n) edges constructible in polynomial time for every fixed k.

For a node Bi
j of H(G), let T i

j = {T i
j (1), . . . , T

i
j (k)} be the set of its local subtrees. Instead of

taking the union of all local subtrees of G, one can fix i (i ∈ {0, 1, . . . , depth(H(G))}) and fix l ∈
{1, . . . , k} and consider separately the union of only local subtrees T i

1(l), . . . , T
i
pi(l), corresponding

to the lth subtrees of level i of the hierarchical tree H(G), and then extend in linear O(m) time
that forest to a spanning tree T i(l) of G (using, for example, a variant of the Kruskal’s Spanning
Tree algorithm for the unweighted graphs). We call this tree T i(l) the lth spanning tree of G
corresponding to the level i of the hierarchical tree H(G). In this way we can obtain at most
k(1+ log2 n) spanning trees for G, k trees for each level i of H(G). Denote the collection of those
spanning trees by T (G). Thus, we deduce the following theorem.

Theorem 7. Every graph G with n vertices and tbk(G) ≤ ρ admits a system T (G) of at most
k(1+ log2 n) collective additive tree (2ρ(1+ log2 n))-spanners constructible in polynomial time for
every fixed k.

5 Additive Spanners for Graphs Admitting (Multiplicative) t–Spanners of
Bounded Tree-width.

In this section, we show that if a graph G admits a (multiplicative) t-spannerH with tw(H) = k−1
then its k-tree-breadth is at most ⌈t/2⌉. As a consequence, we obtain that, for every fixed k, there
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is a polynomial time algorithm that, given an n-vertex graph G admitting a (multiplicative) t-
spanner with tree-width at most k − 1, constructs a system of at most k(1 + log2 n) collective
additive tree O(t log n)-spanners of G.

5.1 k-Tree-breadth of a graph admitting a t-spanner of bounded tree-width

Let H be a graph with tree-width k − 1, and let T (H) = ({Xi|i ∈ I}, T = (I, F )) be its tree-

decomposition of width k − 1. For an integer r ≥ 0, denote by X
(r)
i , i ∈ I, the set Dr(Xi,H) :=

⋃
x∈Xi

Dr(x,H). Clearly, X
(0)
i = Xi for every i ∈ I. The following important lemma holds.

Lemma 14. For every integer r ≥ 0, T (r)(H) := ({X(r)
i |i ∈ I}, T = (I, F )) is a tree-decompo-

sition of H with k-breadth ≤ r.

Proof. It is enough to show that the third condition of tree-decompositions (see Subsection 1.2)
is fulfilled for T (r)(H). That is, for all i, j, k ∈ I, if j is on the path from i to k in T , then

X
(r)
i

⋂
X

(r)
k ⊆ X

(r)
j . We know that Xi

⋂
Xk ⊆ Xj holds and need to show that for every vertex v

of H, dH(v,Xi) ≤ r and dH(v,Xk) ≤ r imply dH(v,Xj) ≤ r. Assume, by way of contradiction,
that for some integer r > 0 and for some vertex v of H, dH(v,Xj) > r while dH(v,Xi) ≤ r and
dH(v,Xk) ≤ r.

Consider the original tree-decomposition T (H). It is known [21] that if ab (a, b ∈ I) is an edge
of the tree T = (I, F ) of tree-decomposition T (H), and Ta, Tb are the subtrees of T obtained
after removing edge ab from T , then S = Xa ∩Xb separates in H vertices belonging to bags of Ta

but not to S from vertices belonging to bags of Tb but not to S. We will use this nice separation
property.

Let T \ {j} be the forest obtained from T by removing node j, and let T (i) and T (k) be the
trees from this forest containing nodes i and k, respectively. Clearly, T (i) and T (k) are disjoint.
The above separation property and inequalities dH(v,Xi) ≤ r < dH(v,Xj) ensure that the vertex
v belongs to a node (a bag) of T (i) (Xj cannot separate in H vertex v from a vertex xi of Xi with
dH(v,Xi) = dH(v, xi) since otherwise dH(v,Xi) > dH(v,Xj) will hold). Similarly, inequalities
dH(v,Xk) ≤ r < dH(v,Xj) and the above separation property guaranty that the vertex v belongs
to a node of T (k). But then, the third condition of tree-decompositions says that v must also
belong to the bag Xj of T (H). The latter, however, is in a contradiction with the assumption
that dH(v,Xj) > r ≥ 0. ⊓⊔

Now we can prove the main lemma of this section.

Lemma 15. If a graph G admits a t-spanner with tree-width k − 1, then tbk(G) ≤ ⌈t/2⌉.

Proof. Let H be a t-spanner of G with tw(G) = k − 1 and T (H) = ({Xi|i ∈ I}, T = (I, F )) be

a tree-decomposition of H of width k − 1. We claim that T (G) := T (⌈t/2⌉)(H) := ({X(⌈t/2⌉)
i |i ∈

I}, T = (I, F )) is a tree-decomposition of G with k-breadth ≤ ⌈t/2⌉.
By Lemma 14, T (⌈t/2⌉)(H) := ({X(⌈t/2⌉)

i |i ∈ I}, T = (I, F )) is a tree-decomposition of H with
k-breadth ≤ ⌈t/2⌉. Hence, the first and the third conditions of tree-decompositions hold for T (G).
For every pair u, v of vertices of G, dG(u, v) ≤ dH(u, v). Therefore, every disk D⌈t/2⌉(x,H) of H
is contained in a disk D⌈t/2⌉(x,G) of G. This implies that every bag of T (G) is covered by at
most k disks of G of radius at most ⌈t/2⌉ each, i.e.,

X
(⌈t/2⌉)
i = D⌈t/2⌉(Xi,H) =

⋃

x∈Xi

D⌈t/2⌉(x,H) ⊆
⋃

x∈Xi

D⌈t/2⌉(x,G).
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We need only to show additionally that each edge uv of G belongs to some bag of T (G). Since
H is a t-spanner of G, dH(u, v) ≤ t holds. Let x be a middle vertex of a shortest path connecting
u and v in H. Then, both u and v belong to the disk D⌈t/2⌉(x,H). Let Xi be a bag of T (H)

containing vertex x. Then, both u and v are contained in X
(⌈t/2⌉)
i , a bag of T (G). ⊓⊔

5.2 Consequences

Now we give two implications of the above results for the class of graphs admitting (multiplicative)
t–spanners with tree-width k − 1. They are direct consequences of Lemma 15, Theorem 6 and
Theorem 7.

Theorem 8. Let G be a graph with n vertices and m edges having a (multiplicative) t–spanner
with tree-width k − 1. Then, G admits an additive (2⌈t/2⌉(1 + log2 n))–spanner with at most
O(kn log n) edges constructible in polynomial time for every fixed k.

Theorem 9. Let G be a graph with n vertices and m edges having a (multiplicative) t–spanner
with tree-width k − 1. Then, G admits a system T (G) of at most k(1 + log2 n) collective additive
tree (2⌈t/2⌉(1 + log2 n))–spanners constructible in polynomial time for every fixed k.

6 Concluding Remarks and Open Problems

Using Robertson-Seymour’s tree-decomposition of graphs, we described a necessary condition for
a graph to have a multiplicative t-spanner of tree-width k (in particular, to have a multiplicative
tree t-spanner, when k = 1). As we have mentioned earlier, this necessary condition is far from
being sufficient. The following interesting problem remains open.

– Does there exist a clean “if and only if” condition under which a graph admits a multiplicative
(or, additive) t-spanner of tree-width k (in particular, admits a multiplicative (or, additive)
tree t-spanner (k = 1 case))?

That necessary condition was very useful in demonstrating that, for every fixed k, there is a
polynomial time algorithm that, given an n-vertex graph G admitting a multiplicative t-spanner
with tree-width k, constructs a system of at most (k + 1)(1 + log2 n) collective additive tree
O(t log n)-spanners of G. In particular, when k = 1, we showed that there is a polynomial time
algorithm that, given an n-vertex graph G admitting a multiplicative tree t-spanner, constructs
a system of at most log2 n collective additive tree O(t log n)-spanners of G. Can these results be
improved?

– Does a polynomial time algorithm exist that, given an n-vertex graph G admitting a multi-
plicative tree t-spanner, constructs a system of O(1) collective additive tree O(t)-spanners of
G?

– Does a polynomial time algorithm exist that, given an n-vertex graph G admitting a mul-
tiplicative t-spanner with tree-width k, constructs a system of O(k) collective additive tree
O(t)-spanners of G?

As we have mentioned earlier, an interesting particular question whether a multiplicative tree
spanner can be turned into an (one) additive tree spanner with a slight increase in the stretch is
(negatively) settled already in [39].

Two more interesting challenging questions we leave for future investigation.

– Is there any polynomial time algorithm which, given a graph admitting a system of at most
µ collective tree t-spanners, constructs a system of at most α(µ, n) collective tree β(t, n)-
spanners, where α(µ, n) is O(µ) (or O(µ log n)) and β(t, n) is O(t) (or O(t log n))?

– Is there a polynomial time algorithm that, for every unweighted graph G admitting a t-spanner
of tree-width k, constructs a (O(k log n)t)-spanner with tree-width at most k?
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