Skip to main content

Human-Robot Natural Interaction with Collision Avoidance in Manufacturing Operations

  • Chapter
Service Orientation in Holonic and Multi Agent Manufacturing and Robotics

Part of the book series: Studies in Computational Intelligence ((SCI,volume 472))

Abstract

The paper discusses a new method of tracking and controlling robots that interact with humans (natural interaction) to provide assistance services in manufacturing tasks. Using depth sensors the robots are able to assist the human operator and to avoid collisions. Natural interaction is implemented using a depth sensor which monitors the activity outside and inside the robot system workspace. The sensor extracts depth data from the environment and then uses the processing power of a workstation in order to detect both humans and robot arms. This is done by detecting skeletons which represent the position and posture of the humans and manipulators. Using skeleton tracking, a software agent is able to monitor the movements of the human operators and robotic arms and to detect possible collisions in order to stop the robot motion at the right time. Also the agent can interpret the posture (or full body gesture) of the human operator in order to send basic commands to the robot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Miyabe, T., Konno, A., Uchiyama, M., Yamano, M.: An approach toward an auto-mated object retrieval operation with a two-arm flexible manipulator. Int. J. Robot. Res. 23, 275–291 (2004)

    Article  Google Scholar 

  2. Gueaieb, W., Karray, F., Al-Sharhan, S.: A robust adaptive fuzzy position/force control scheme for cooperative manipulators. IEEE Trans. on Control System Technology 11, 516–528 (2003)

    Article  Google Scholar 

  3. Kawasaki, H., Ueki, S., Ito, S.: Decentralized adaptive coordinated control of multiple robot arms without using a force sensor. Automatica 42, 481–488 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Martinez-Rosas, J.C., Arteaga, M.A., Castillo-Sanchez, A.M.: Decentralized control of cooperative robots without velocity-force measurements. Automatica 42, 329–336 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Anderson, E., Budig, A.: XBOX 360 KINECT (2011), http://eet.etec.wwu.edu/ander290/docs/KinectPaper.pdf (retrieved March 7, 2011)

  6. Microsoft research, Kinect for Windows SDK, Programming Guide (2011), http://research.microsoft.com/redmond/kinectsdk/docs/programmingguide_kinectsdk.pdf (June 16, 2011)

  7. Dutta, T.: Evaluation of the Kinect sensor for 3-D kinematic measurement in the Workplace. Applied Ergonomics (2011) (in press)

    Google Scholar 

  8. Rüppel, U., Schatz, K.: Designing a BIM-based serious game for fire safety evacuation simulations. Advanced Engineering Informatics 25(4), 600–611 (2011)

    Article  Google Scholar 

  9. Schwarz, L.A., Mkhitaryan, A., Mateus, D., Navab, N.: Human skeleton tracking from depth data using geodesic distances and optical flow. Image and Vision Computing (2011) (in press)

    Google Scholar 

  10. Chang, Y.-J., Chen, S.-F., Chuang, A.-F.: A gesture recognition system to transition autonomously through vocational tasks for individuals with cognitive impairments. Research in Developmental Disabilities 32(6), 2064–2068 (2011)

    Article  Google Scholar 

  11. Chang, Y.-J., Chen, S.-F., Huang, J.-D.: A Kinect-based system for physical rehabilitation: A pilot study for young adults with motor disabilities. Research in Developmental Disabilities 32(6), 2566–2570 (2011)

    Article  Google Scholar 

  12. Aghajan, H., Wu, C., Kleihorst, R.: Distributed vision networks for human pose analysis. In: Signal Processing Techniques for Knowledge Extraction and Information Fusion, pp. 181–200 (2008)

    Google Scholar 

  13. Anderson, E., Budig, A.: XBOX 360 KINECT (2011), http://eet.etec.wwu.edu/ander290/docs/KinectPaper.pdf (retrieved March 7, 2011)

  14. Bauckhage, C., Kummert, F., Sagerer, G.: A Structural Framework for Assembly Modeling and Recognition. In: Petkov, N., Westenberg, M.A. (eds.) CAIP 2003. LNCS, vol. 2756, pp. 49–56. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Ben-Arie, J., Wang, Z., Rajaram, S.: Human activity recognition using multidimensional indexing. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 1091–1104 (2002)

    Article  Google Scholar 

  16. Lin, L., Wu, T., Porway, J., Xu, Z.: A stochastic grammar for compositional object representation and recognition. Pattern Recognition 42, 1297–1307 (2009)

    Article  MATH  Google Scholar 

  17. Mocanu, S., Mocanu, I., Anton, S., Munteanu, C.: AmIHomeCare: a complex ambient intelligent system for home medical assistance. In: Proceedings of the 10th International Conference on Applied Computer and Applied Computational Science, Venice, pp. 181–186 (2011)

    Google Scholar 

  18. Ramos, C., Augusto, J., Shapiro, D.: Ambient intelligence - the next step for artificial intelligence. IEEE Intelligent Systems 23(2), 15–18 (2008)

    Article  Google Scholar 

  19. Robertson, C., Trucco, E.: Human body posture via hierarchical evolutionary optimization. In: BMVC, pp. 999–1008 (2006)

    Google Scholar 

  20. Quinlan, J.R.: Induction of decision trees. Machine Learning 1, 81–106 (1986)

    Google Scholar 

  21. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, Inc., Los Altos (1993)

    Google Scholar 

  22. Shkotin, A.: Graph representation of context-free grammars (2007), http://arxiv.org/ftp/cs/papers/0703/0703015.pdf

  23. Wu, C., Aghajan, H.: Human Pose Estimation in Vision Networks Via Distributed Local Processing and Nonparametric Belief Propagation. In: Blanc-Talon, J., Bourennane, S., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2008. LNCS, vol. 5259, pp. 1006–1017. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florin D. Anton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Anton, F.D., Anton, S., Borangiu, T. (2013). Human-Robot Natural Interaction with Collision Avoidance in Manufacturing Operations. In: Borangiu, T., Thomas, A., Trentesaux, D. (eds) Service Orientation in Holonic and Multi Agent Manufacturing and Robotics. Studies in Computational Intelligence, vol 472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35852-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35852-4_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35851-7

  • Online ISBN: 978-3-642-35852-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics