Skip to main content

Modeling Application-Level Management of Virtualized Resources in ABS

  • Chapter
Formal Methods for Components and Objects (FMCO 2011)

Abstract

Virtualization motivates lifting aspects of low-level resource management to the abstraction level of modeling languages, in order to model and analyze virtualized resource usage for application-level services and its relationship to service-level QoS. In this paper we illustrate how the modeling language ABS may be used for this purpose by modeling a service deployed on the cloud. Virtual machines are provided on demand to the service, which distributes service requests between its available machines depending on its application-level load balancing scheme. The resulting ABS models are used to relate the accumulated usage cost for the virtual machines to the obtained QoS for the service.

ABS is an abstract behavioral specification language for designing executable models of distributed object-oriented systems. The language combines advanced concurrency and synchronization mechanisms based on concurrent object groups with a functional language for modeling data. ABS supports deployment variability by dynamically created deployment components which act as resource-restricted execution contexts for ABS objects, for example with respect to CPU resources. The use of these artefacts is demonstrated in this paper through an example of service-level management of virtualized resources on the cloud.

Partly funded by the EU project FP7-231620 HATS: Highly Adaptable and Trustworthy Software using Formal Models ( http://www.hats-project.eu )

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agha, G.A.: ACTORS: A Model of Concurrent Computations in Distributed Systems. The MIT Press (1986)

    Google Scholar 

  2. Albert, E., Arenas, P., Genaim, S., Gómez-Zamalloa, M., Puebla, G.: COSTABS: a cost and termination analyzer for ABS. In: Proc. Workshop on Partial Evaluation and Program Manipulation (PEPM 2012), pp. 151–154. ACM (2012)

    Google Scholar 

  3. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost Analysis of Java Bytecode. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 157–172. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Albert, E., Genaim, S., Gómez-Zamalloa, M., Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: Simulating Concurrent Behaviors with Worst-Case Cost Bounds. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 353–368. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Armstrong, J.: Programming Erlang. Pragmatic Bookshelf (2007)

    Google Scholar 

  6. Balsamo, S., Marco, A.D., Inverardi, P., Simeoni, M.: Model-based performance prediction in software development: A survey. IEEE Transactions on Software Engineering 30(5), 295–310 (2004)

    Article  Google Scholar 

  7. Bjørk, J., de Boer, F.S., Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: User-defined schedulers for real-time concurrent objects. To Appear in Innovations in Systems and Software Engineering (2012)

    Google Scholar 

  8. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation Computer Systems 25(6), 599–616 (2009)

    Article  Google Scholar 

  9. Caromel, D., Henrio, L.: A Theory of Distributed Object. Springer (2005)

    Google Scholar 

  10. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource Interfaces. In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 117–133. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: All About Maude. LNCS, vol. 4350. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  12. de Boer, F.S., Clarke, D., Johnsen, E.B.: A Complete Guide to the Future. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 316–330. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. de Boer, F.S., Hähnle, R., Johnsen, E.B., Schlatte, R., Wong, P.Y.H.: Formal Modeling of Resource Management for Cloud Architectures: An Industrial Case Study. In: De Paoli, F., Pimentel, E., Zavattaro, G. (eds.) ESOCC 2012. LNCS, vol. 7592, pp. 91–106. Springer, Heidelberg (2012)

    Google Scholar 

  14. de Boer, F.S., Jaghoori, M.M., Johnsen, E.B.: Dating Concurrent Objects: Real-Time Modeling and Schedulability Analysis. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 1–18. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Eckhardt, J., Mühlbauer, T., AlTurki, M., Meseguer, J., Wirsing, M.: Stable Availability under Denial of Service Attacks through Formal Patterns. In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 78–93. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  16. Epifani, I., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Model evolution by run-time parameter adaptation. In: Proc. ICSE, pp. 111–121. IEEE (2009)

    Google Scholar 

  17. Fersman, E., Krcál, P., Pettersson, P., Yi, W.: Task automata: Schedulability, decidability and undecidability. Information and Computation 205(8), 1149–1172 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gulwani, S., Mehra, K.K., Chilimbi, T.M.: Speed: Precise and Efficient Static Estimation of Program Computational Complexity. In: POPL, pp. 127–139. ACM (2009)

    Google Scholar 

  19. Haller, P., Odersky, M.: Scala actors: Unifying thread-based and event-based programming. Theoretical Computer Science 410(2-3), 202–220 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jaghoori, M.M., de Boer, F.S., Chothia, T., Sirjani, M.: Schedulability of asynchronous real-time concurrent objects. Journal of Logic and Algebraic Programming 78(5), 402–416 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A Core Language for Abstract Behavioral Specification. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  22. Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed concurrent objects. Software and Systems Modeling 6(1), 35–58 (2007)

    Article  Google Scholar 

  23. Johnsen, E.B., Owe, O., Schlatte, R., Tapia Tarifa, S.L.: Dynamic Resource Reallocation between Deployment Components. In: Dong, J.S., Zhu, H. (eds.) ICFEM 2010. LNCS, vol. 6447, pp. 646–661. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  24. Johnsen, E.B., Owe, O., Schlatte, R., Tapia Tarifa, S.L.: Validating Timed Models of Deployment Components with Parametric Concurrency. In: Beckert, B., Marché, C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 46–60. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  25. Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: A Formal Model of Object Mobility in Resource-Restricted Deployment Scenarios. In: Arbab, F., Ölveczky, P. (eds.) FACS 2011. LNCS, vol. 7253, pp. 187–204. Springer, Heidelberg (2012)

    Google Scholar 

  26. Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: Modeling Resource-Aware Virtualized Applications for the Cloud in Real-Time ABS. In: Aoki, T., Tagushi, K. (eds.) ICFEM 2012. LNCS, vol. 7635, pp. 71–86. Springer, Heidelberg (2012)

    Google Scholar 

  27. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. International Journal on Software Tools for Technology Transfer 1(1-2), 134–152 (1997)

    Article  MATH  Google Scholar 

  28. Petriu, D.B., Woodside, C.M.: An intermediate metamodel with scenarios and resources for generating performance models from UML designs. Software and System Modeling 6(2), 163–184 (2007)

    Article  Google Scholar 

  29. Verhoef, M., Larsen, P.G., Hooman, J.: Modeling and Validating Distributed Embedded Real-Time Systems with VDM++. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 147–162. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  30. Welc, A., Jagannathan, S., Hosking, A.: Safe futures for Java. In: Proc. OOPSLA, pp. 439–453. ACM Press (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L. (2013). Modeling Application-Level Management of Virtualized Resources in ABS. In: Beckert, B., Damiani, F., de Boer, F.S., Bonsangue, M.M. (eds) Formal Methods for Components and Objects. FMCO 2011. Lecture Notes in Computer Science, vol 7542. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35887-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35887-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35886-9

  • Online ISBN: 978-3-642-35887-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics