Skip to main content

Infinite Random Geometric Graphs from the Hexagonal Metric

  • Conference paper
Combinatorial Algorithms (IWOCA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7643))

Included in the following conference series:

Abstract

We consider countably infinite random geometric graphs, whose vertices are points in ℝn, and edges are added independently with probability p ∈ (0,1) if the metric distance between the vertices is below a given threshold. Assume that the vertex set is randomly chosen and dense in ℝn. We address the basic question: for what metrics is there a unique isomorphism type for graphs resulting from this random process? It was shown in [7] that a unique isomorphism type occurs for the L  ∞ -metric for all n ≥ 1. The hexagonal metric is a convex polyhedral distance function on ℝ2, which has the property that its unit balls tile the plane, as in the case of the L  ∞ -metric. We may view the hexagonal metric as an approximation of the Euclidean metric, and it arises in computational geometry. We show that the random process with the hexagonal metric does not lead to a unique isomorphism type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiello, W., Bonato, A., Cooper, C., Janssen, J., Prałat, P.: A spatial web graph model with local influence regions. Internet Mathematics 5, 175–196 (2009)

    Article  Google Scholar 

  2. Balister, P., Bollobás, B., Sarkar, A., Walters, M.: Highly connected random geometric graphs. Discrete Applied Mathematics 157, 309–320 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barbeau, M., Kranakis, E.: Principles of Ad Hoc Networking. John Wiley and Sons (2007)

    Google Scholar 

  4. Barequet, G., Dickerson, M.T., Goodrich, M.T.: Voronoi diagrams for convex polygon-offset distance functions. Discrete & Computational Geometry 25, 271–291 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bonato, A.: A Course on the Web Graph. American Mathematical Society Graduate Studies Series in Mathematics, Providence, Rhode Island (2008)

    Google Scholar 

  6. Bonato, A., Janssen, J., Prałat, P.: The Geometric Protean Model for On-Line Social Networks. In: Kumar, R., Sivakumar, D. (eds.) WAW 2010. LNCS, vol. 6516, pp. 110–121. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Bonato, A., Janssen, J.: Infinite random geometric graphs. Annals of Combinatorics 15, 597–617 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Borgs, C., Chayes, J., Lovász, L., Sós, V.T., Vesztergombi, K.: Convergent Sequences of Dense Graphs I: Subgraph Frequencies, Metric Properties and Testing. Advances in Math. 219, 1801–1851 (2008)

    Article  MATH  Google Scholar 

  9. Borgs, C., Chayes, J., Lovász, L., Sós, V.T., Vesztergombi, K.: Convergent Sequences of Dense Graphs II: Multiway Cuts and Statistical Physics, Preprint (2007)

    Google Scholar 

  10. Bryant, V.: Metric Spaces: Iteration and Application. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  11. Cameron, P.J.: The random graph. In: Graham, R.L., Nešetřil, J. (eds.) Algorithms and Combinatorics, vol. 14, pp. 333–351. Springer, New York (1997)

    Google Scholar 

  12. Cameron, P.J.: The random graph revisited. In: Casacuberta, C., Miró-Roig, R.M., Verdera, J., Xambó-Descamps, S. (eds.) European Congress of Mathematics, vol. I, pp. 267–274. Birkhauser, Basel (2001)

    Chapter  Google Scholar 

  13. Chew, L.P., Kedem, K., Sharir, M., Tagansky, B., Welzl, E.: Voronoi diagrams of lines in three dimensions under polyhedral convex distance functions. J. Algorithms 29, 238–255 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ellis, R., Jia, X., Yan, C.H.: On random points in the unit disk. Random Algorithm and Structures 29, 14–25 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Erdős, P., Rényi, A.: Asymmetric graphs. Acta Mathematica Academiae Scientiarum Hungaricae 14, 295–315 (1963)

    Article  MathSciNet  Google Scholar 

  16. Flaxman, A., Frieze, A.M., Vera, J.: A geometric preferential attachment model of networks. Internet Mathematics 3, 187–205 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Frieze, A.M., Kleinberg, J., Ravi, R., Debany, W.: Line of sight networks. Combinatorics, Probability and Computing 18, 145–163 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fu, N., Imai, H., Moriyama, S.: Voronoi diagrams on periodic graphs. In: Proceedings of the International Symposium on Voronoi Diagrams in Science and Engineering (2010)

    Google Scholar 

  19. Goel, A., Rai, S., Krishnamachari, B.: Monotone properties of random geometric graphs have sharp thresholds. Annals of Applied Probability 15, 2535–2552 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Icking, C., Klein, R., Le, N., Ma, L.: Convex distance functions in 3-space are different. In: Proceedings of the Ninth Annual Symposium on Computational Geometry (1993)

    Google Scholar 

  21. Janssen, J.: Spatial models for virtual networks. In: Proceedings of the 6th Computability in Europe (2010)

    Google Scholar 

  22. Lovász, L., Szegedy, B.: Limits of dense graph sequences. J. Comb. Theory B 96, 933–957 (2006)

    Article  MATH  Google Scholar 

  23. Penrose, M.: Random Geometric Graphs. Oxford University Press, Oxford (2003)

    Book  MATH  Google Scholar 

  24. Stojmenovic, I.: Honeycomb networks: Topological properties and communication algorithms. IEEE Transactions on Parallel and Distributed Systems 8, 1036–1042 (1997)

    Article  Google Scholar 

  25. West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice-Hall (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bonato, A., Janssen, J. (2012). Infinite Random Geometric Graphs from the Hexagonal Metric. In: Arumugam, S., Smyth, W.F. (eds) Combinatorial Algorithms. IWOCA 2012. Lecture Notes in Computer Science, vol 7643. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35926-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35926-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35925-5

  • Online ISBN: 978-3-642-35926-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics