Skip to main content

Deterministic Fuzzy Automata on Fuzzy Regular ω-Languages

  • Conference paper
Combinatorial Algorithms (IWOCA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7643))

Included in the following conference series:

  • 883 Accesses

Abstract

In this paper, the concept of fuzzy local ω-language, B\(\ddot{u}\)chi fuzzy local ω-language are studied and we give some closure properties of fuzzy local ω-languages. We also establish relationship between deterministic fuzzy local automaton and fuzzy local ω-language. Further we show that every fuzzy regular ω-language is a projection of a B\(\ddot{u}\)chi fuzzy local ω-language.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Béal, M.P.: Codes circulaires, automates locaux et entropie. Theoretical Compute Science 57, 283–302 (1988)

    Article  Google Scholar 

  2. Berstel, J., Pin, J.-E.: Local languages and the Berry - Sethi algorithm. Theoretical Computer Science 155, 439–446 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Caron, P.: Families of locally testable languages. Theoretical Computer Science 242, 361–376 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gnanasekaran, S.: Fuzzy local languages. International Mathematical Forum 5(44), 2149–2155 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Malik, D.S., Mordeson, J.N.: On Fuzzy regular languages. Information Sciences 88, 263–273 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Mordeson, J.N., Malik, D.S.: Fuzzy automata and languages. Chapman and Hall, CRC (2002)

    Google Scholar 

  7. Perrin, D., Pin, J.-E.: Infinite Words, Automata, Pure and Applied Mathematics, vol. 141. Elsevier (2004)

    Google Scholar 

  8. Wee, W.G., Fu, K.S.: A Formation of Fuzzy Automata and its application as a model of learning system. IEEE Transactions on in Systems Science and Cybernetics 5(3), 215–223 (1969)

    Article  MATH  Google Scholar 

  9. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arulprakasam, R., Dare, V.R., Gnanasekaran, S. (2012). Deterministic Fuzzy Automata on Fuzzy Regular ω-Languages. In: Arumugam, S., Smyth, W.F. (eds) Combinatorial Algorithms. IWOCA 2012. Lecture Notes in Computer Science, vol 7643. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35926-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35926-2_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35925-5

  • Online ISBN: 978-3-642-35926-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics