Abstract
Term similarity assessment usually leads to situations where contradictory evidence support has different views concerning the meaning of a concept and how similar it is to other concepts. Human experts can resolve their differences through discussion, whereas ontology mapping systems need to be able to eliminate contradictions before similarity combination can achieve high quality results. In these situations, different similarities represent conflicting ideas about the interpreted meaning of the concepts. Such contradictions can contribute to unreliable mappings, which in turn worsen both the mapping precision and recall. In order to avoid including contradictory beliefs in similarities during the combination process, trust in the beliefs needs to be established and untrusted beliefs should be excluded from the combination. In this chapter, we propose a solution for establishing fuzzy trust to manage belief conflicts using a fuzzy voting model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Euzenat, J., Shvaiko, P.: Ontology matching. Springer, Heidelberg (2007)
Shvaiko, P., Euzenat, J.: Ten challenges for ontology matching. Technical Report DISI-08-042, University of Trento (2008)
Nagy, M., Vargas-Vera, M., Motta, E.: DSSim - managing uncertainty on the semantic web. In: Proceedings of the 2nd International Workshop on Ontology Matching (2007)
Nagy, M., Vargas-Vera, M., Motta, E.: Multi-agent ontology mapping with uncertainty on the semantic web. In: Proceedings of the 3rd IEEE International Conference on Intelligent Computer Communication and Processing (2007)
Nagy, M., Vargas-Vera, M., Stolarski, P.: DSSim results for OAEI 2009. In: Proceedings of the 4th International Workshop on Ontology Matching, OM 2009 (2009)
Sentz, K., Ferson, S.: Combination of evidence in dempster-shafer theory. Technical report, Systems Science and Industrial Engineering Department, Binghamton University (2002)
Yager, R.R.: On the dempster-shafer framework and new combination rules. Information Sciences: an International Journal 41, 93–137 (1987)
Yager, R.R.: Quasi-associative operations in the combination of evidence. Kybernetes 16, 37–41 (1987)
Smarandache, F., Dezert, J. (eds.): Advances and Applications of DSmT for Information Fusion (Collected Works), vol. 1. American Research Press (2004)
Richardson, M., Agrawal, R., Domingos, P.: Trust Management for the Semantic Web. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 351–368. Springer, Heidelberg (2003)
Laera, L., Blacoe, I., Tamma, V., Payne, T., Euzenat, J., Bench-Capon, T.: Argumentation over ontology correspondences in MAS. In: AAMAS 2007: Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 1–8. ACM, New York (2007)
Griffiths, N.: A Fuzzy Approach to Reasoning with Trust, Distrust and Insufficient Trust. In: Klusch, M., Rovatsos, M., Payne, T.R. (eds.) CIA 2006. LNCS (LNAI), vol. 4149, pp. 360–374. Springer, Heidelberg (2006)
Rehak, M., Pechoucek, M., Benda, P., Foltyn, L.: Trust in coalition environment: Fuzzy number approach. In: Proceedings of the 4th International Joint Conference on Autonomous Agents and Multi Agent Systems - Workshop Trust in Agent Societies, pp. 119–131 (2005)
Yamada, K.: A new combination of evidence based on compromise. Fuzzy Sets Syst. 159(13), 1689–1708 (2008)
Josang, A.: The consensus operator for combining beliefs. Artificial Intelligence 141(1), 157–170 (2002)
Ferrara, A., Lorusso, D., Stamou, G., Stoilos, G., Tzouvaras, V., Venetis, T.: Resolution of conflicts among ontology mappings: a fuzzy approach. In: Proceedings of the 3rd International Workshop on Ontology Matching (2008)
Tang, J., Li, J., Liang, B., Huang, X., Li, Y., Wang, K.: Using bayesian decision for ontology mapping. Web Semantics: Science, Services and Agents on the World Wide Web 4, 243–262 (2006)
Liu, X.J., Wang, Y.L., Wang, J.: Towards a semi-automatic ontology mapping - an approach using instance based learning and logic relation mining. In: Fifth Mexican International Conference (MICAI 2006) on Artificial Intelligence (2006)
Jean-Mary, Y.R., Kabuka, M.R.: ASMOV: Results for OAEI 2008. In: Proceedings of the 3rd International Workshop on Ontology Matching (2008)
Beckett, D.: RDF/XML syntax specification
McGuinness, D.L., van Harmelen, F.: OWL web ontology language
Miles, A., Bechhofer, S.: SKOS simple knowledge organization system
Lenzerini, M., Milano, D., Poggi, A.: Ontology representation & reasoning. Technical Report NoE InterOp (IST-508011), WP8, subtask 8.2, Universit di Roma La Sapienza, Roma, Italy (2004)
Wang, R.Y., Kon, H.B., Madnick, S.E.: Data quality requirements analysis and modeling. In: Proceedings of the Ninth International Conference on Data Engineering, pp. 670–677 (1993)
Wand, Y., Wang, R.Y.: Anchoring data quality dimensions in ontological foundations. Communications of the ACM, 86–95 (1996)
Batini, C., Lenzerini, M., Navathe, S.B.: A comparative analysis of methodologies for database schema integration. ACM Computing Surveys 18(4), 323–364 (1986)
Baldwin, J.F.: Mass Assignment Fundamentals for Computing with Words. In: L. Ralescu, A. (ed.) IJCAI-WS 1997. LNCS, vol. 1566, pp. 22–44. Springer, Heidelberg (1999)
Lawry, J.: A voting mechanism for fuzzy logic. International Journal of Approximate Reasoning 19, 315–333 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nagy, M., Vargas-Vera, M. (2013). Dealing with Contradictory Evidence Using Fuzzy Trust in Semantic Web Data. In: Bobillo, F., et al. Uncertainty Reasoning for the Semantic Web II. URSW URSW URSW UniDL 2010 2009 2008 2010. Lecture Notes in Computer Science(), vol 7123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35975-0_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-35975-0_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-35974-3
Online ISBN: 978-3-642-35975-0
eBook Packages: Computer ScienceComputer Science (R0)