Abstract
Quicksort may be the most familiar and important randomised algorithm studied in computer science. It is well known that the expected number of comparisons on any input of n distinct keys is Θ(n ln n), and the probability of a large deviation above the expected value is very small. This probability was well estimated some time ago, with an ad-hoc proof: we shall revisit this result in the light of further work on concentration.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms, 2nd edn. MIT Press, McGraw Hill (2001)
Devroye, L.: A note on the height of binary search trees. Journal of the ACM 33, 489–498 (1986)
Durrett, R.: Probability: Theory and Examples, 4th edn. Cambridge University Press (2010)
Freedman, D.A.: On tail probabilities for martingales. Ann. Probab. 3, 100–118 (1975)
Grimmett, G.R., Stirzaker, D.R.: Probability and Random Processes, 3rd edn. Oxford University Press (2001)
Hennequin, P.: Combinatorial analysis of quicksort algorithm. Theoretical Informatics and Applications 23, 317–333 (1989)
Hoare, C.A.R.: Partition (algorithm 63), quicksort (algorithm 64), and find (algorithm 65). J. ACM 7, 321–322 (1961)
Hoare, C.A.R.: Quicksort. Computer J. 5, 10–15 (1962)
Knuth, D.: The Art of Computer Programming vol. 3: Sorting and Searching, 3rd edn. Addison-Wesley (1997)
Mahmoud, H.M.: Evolution of Random Search Trees. Wiley, New York (1992)
McDiarmid, C.: On the method of bounded differences. In: Siemons, J. (ed.) Surveys in Combinatorics. London Math Society (1989)
McDiarmid, C.: Concentration. In: Habib, M., McDiarmid, C., Ramirez, J., Reed, B. (eds.) Probabilistic Methods for Algorithmic Discrete Mathematics, pp. 195–248. Springer (1998)
McDiarmid, C., Hayward, R.: Strong concentration for quicksort. In: Proceedings of the Third Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 414–421 (1992)
McDiarmid, C., Hayward, R.: Large deviations for Quicksort. J. Algorithms 21, 476–507 (1996)
Régnier, M.: A limiting distribution for quicksort. Theoretical Informatics and Applications 23, 335–343 (1989)
Rösler, U.: A limit theorem for quicksort. Theoretical Informatics and Applications 25, 85–100 (1991)
Sedgewick, R.: Quicksort, 1st edn. Garland Publishing Inc. (1980)
Shiryaev, A.N.: Probability, 2nd edn. Graduate Texts in Mathematics, vol. 95. Springer (1996)
VanEmden, M.H.: Increasing the efficiency of quicksort. Communications of the ACM 13, 563–567 (1970)
Williams, D.: Probability with Martingales. Cambridge University Press (1991)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
McDiarmid, C. (2013). Quicksort and Large Deviations. In: Kučera, A., Henzinger, T.A., Nešetřil, J., Vojnar, T., Antoš, D. (eds) Mathematical and Engineering Methods in Computer Science. MEMICS 2012. Lecture Notes in Computer Science, vol 7721. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36046-6_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-36046-6_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36044-2
Online ISBN: 978-3-642-36046-6
eBook Packages: Computer ScienceComputer Science (R0)