Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7721))

  • 1213 Accesses

Abstract

Quicksort may be the most familiar and important randomised algorithm studied in computer science. It is well known that the expected number of comparisons on any input of n distinct keys is Θ(n ln n), and the probability of a large deviation above the expected value is very small. This probability was well estimated some time ago, with an ad-hoc proof: we shall revisit this result in the light of further work on concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms, 2nd edn. MIT Press, McGraw Hill (2001)

    Google Scholar 

  2. Devroye, L.: A note on the height of binary search trees. Journal of the ACM 33, 489–498 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Durrett, R.: Probability: Theory and Examples, 4th edn. Cambridge University Press (2010)

    Google Scholar 

  4. Freedman, D.A.: On tail probabilities for martingales. Ann. Probab. 3, 100–118 (1975)

    Article  MATH  Google Scholar 

  5. Grimmett, G.R., Stirzaker, D.R.: Probability and Random Processes, 3rd edn. Oxford University Press (2001)

    Google Scholar 

  6. Hennequin, P.: Combinatorial analysis of quicksort algorithm. Theoretical Informatics and Applications 23, 317–333 (1989)

    MathSciNet  MATH  Google Scholar 

  7. Hoare, C.A.R.: Partition (algorithm 63), quicksort (algorithm 64), and find (algorithm 65). J. ACM 7, 321–322 (1961)

    Google Scholar 

  8. Hoare, C.A.R.: Quicksort. Computer J. 5, 10–15 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  9. Knuth, D.: The Art of Computer Programming vol. 3: Sorting and Searching, 3rd edn. Addison-Wesley (1997)

    Google Scholar 

  10. Mahmoud, H.M.: Evolution of Random Search Trees. Wiley, New York (1992)

    MATH  Google Scholar 

  11. McDiarmid, C.: On the method of bounded differences. In: Siemons, J. (ed.) Surveys in Combinatorics. London Math Society (1989)

    Google Scholar 

  12. McDiarmid, C.: Concentration. In: Habib, M., McDiarmid, C., Ramirez, J., Reed, B. (eds.) Probabilistic Methods for Algorithmic Discrete Mathematics, pp. 195–248. Springer (1998)

    Google Scholar 

  13. McDiarmid, C., Hayward, R.: Strong concentration for quicksort. In: Proceedings of the Third Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 414–421 (1992)

    Google Scholar 

  14. McDiarmid, C., Hayward, R.: Large deviations for Quicksort. J. Algorithms 21, 476–507 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Régnier, M.: A limiting distribution for quicksort. Theoretical Informatics and Applications 23, 335–343 (1989)

    MATH  Google Scholar 

  16. Rösler, U.: A limit theorem for quicksort. Theoretical Informatics and Applications 25, 85–100 (1991)

    MATH  Google Scholar 

  17. Sedgewick, R.: Quicksort, 1st edn. Garland Publishing Inc. (1980)

    Google Scholar 

  18. Shiryaev, A.N.: Probability, 2nd edn. Graduate Texts in Mathematics, vol. 95. Springer (1996)

    Google Scholar 

  19. VanEmden, M.H.: Increasing the efficiency of quicksort. Communications of the ACM 13, 563–567 (1970)

    Article  Google Scholar 

  20. Williams, D.: Probability with Martingales. Cambridge University Press (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

McDiarmid, C. (2013). Quicksort and Large Deviations. In: Kučera, A., Henzinger, T.A., Nešetřil, J., Vojnar, T., Antoš, D. (eds) Mathematical and Engineering Methods in Computer Science. MEMICS 2012. Lecture Notes in Computer Science, vol 7721. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36046-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36046-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36044-2

  • Online ISBN: 978-3-642-36046-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics