Abstract
The DENSEST k-SUBGRAPH problem is a generalization of the maximum clique problem, in which we are given a graph G and a positive integer k, and we search among the subsets of k vertices of G one inducing a maximum number of edges. In this paper, we present algorithms for finding exact solutions of k-SUBGRAPH improving the trivial exponential time complexity of O *(2n) and using polynomial space. Two FPT algorithms are also proposed; the first considers as parameter the treewidth of the input graph and uses exponential space, while the second is parameterized by the size of the minimum vertex cover and uses polynomial space. Finally, we propose several approximation algorithms running in moderately exponential or parameterized time.
Research supported by the French Agency for Research under the DEFIS program TODO, ANR-09-EMER-010.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM Journal on Algebraic and Discrete Methods 8, 277–284 (1987)
Asahiro, Y., Hassin, R., Iwama, K.: Complexity of finding dense subgraphs. Discrete Applied Mathematics 121, 15–26 (2002)
Bhaskara, A., Charikar, M., Chlamtac, E., Feige, U., Vijayaraghavan, A.: Detecting high log-densities: An O(n 1/4) approximation for densest k-subgraph. In: STOC 2010, pp. 201–210 (2010)
Billionnet, A., Roupin, F.: A deterministic approximation algorithm for the densest k-subgraph problem. International Journal of Operational Research 3, 301–314 (2008)
Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion-exclusion. SIAM Journal of Computing 39(2), 546–563 (2009)
Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM Journal on Computing 25, 1305–1317 (1996)
Bourgeois, N., Escoffier, B., Paschos, V.T.: Approximation of max independent set, min vertex cover and related problems by moderately exponential algorithms. Discrete Applied Mathematics 159(17), 1954–1970 (2011)
Bourgeois, N., Escoffier, B., Paschos, V.T., van Rooij, J.M.M.: Fast algorithms for max independent set. Algorithmica 62, 382–415 (2012)
Bourgeois, N., Giannakos, A., Lucarelli, G., Milis, I., Paschos, V.T., Pottié, O.: The max quasi-independent set problem. Journal of Combinatorial Optimization 23, 94–117 (2012)
Bourgeois, N., Giannakos, A., Lucarelli, G., Milis, I., Paschos, V.T.: The Exact and approximation algorithms for densest k -subgraph. Cahiers du LAMSADE (324) (2012)
Brankovic, L., Fernau, H.: Combining Two Worlds: Parameterised Approximation for Vertex Cover. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010, Part I. LNCS, vol. 6506, pp. 390–402. Springer, Heidelberg (2010)
Cai, L.: Parameterized complexity of cardinality constrained optimization problems. The Computer Journal 51, 102–121 (2007)
Cai, L., Huang, X.: Fixed-Parameter Approximation: Conceptual Framework and Approximability Results. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 96–108. Springer, Heidelberg (2006)
Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theoretical Computer Science 411, 3736–3756 (2010)
Cygan, M., Kowalik, L., Wykurz, M.: Exponential-time approximation of weighted set cover. Information Processing Letters 109(16), 957–961 (2009)
Cygan, M., Pilipczuk, M.: Exact and approximate bandwidth. Theoretical Computer Science 411(40-42), 3701–3713 (2010)
Downey, R.G., Fellows, M.R.: Parameterized complexity. Monographs in Computer Science. Springer, New York (1999)
Downey, R.G., Fellows, M.R., McCartin, C.: Parameterized Approximation Problems. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 121–129. Springer, Heidelberg (2006)
Feige, U., Kortsarz, G., Peleg, D.: The dense k-subgraph problem. Algorithmica 29, 410–421 (2001)
Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the analysis of exact algorithms. Journal of the ACM 56 (2009)
Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory of NP-completeness. Freeman, San Francisco (1979)
Khot, S.: Ruling out PTAS for graph min-bisection, densest subgraph and bipartite clique. In: FOCS 2004, pp. 136–145 (2004)
Kloks, T.: Treewidth. LNCS, vol. 842. Springer, Heidelberg (1994)
Marx, D.: Parameterized complexity and approximation algorithms. The Computer Journal 51(1), 60–78 (2008)
Moser, H.: Exact algorithms for generalizations of vertex cover. PhD thesis, Friedrich-Schiller-Universität Jena (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bourgeois, N., Giannakos, A., Lucarelli, G., Milis, I., Paschos, V.T. (2013). Exact and Approximation Algorithms for Densest k-Subgraph. In: Ghosh, S.K., Tokuyama, T. (eds) WALCOM: Algorithms and Computation. WALCOM 2013. Lecture Notes in Computer Science, vol 7748. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36065-7_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-36065-7_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36064-0
Online ISBN: 978-3-642-36065-7
eBook Packages: Computer ScienceComputer Science (R0)