Abstract
We consider a natural generalization of the Partial Vertex Cover problem. Here an instance consists of a graph G = (V,E), a cost function c: V → ℤ + , a partition P 1, …, P r of the edge set E, and a parameter k i for each partition P i . The goal is to find a minimum cost set of vertices which cover at least k i edges from the partition P i . We call this the Partition-VC problem. In this paper, we give matching upper and lower bound on the approximability of this problem. Our algorithm is based on a novel LP relaxation for this problem. This LP relaxation is obtained by adding knapsack cover inequalities to a natural LP relaxation of the problem. We show that this LP has integrality gap of O(logr), where r is the number of sets in the partition of the edge set. We also extend our result to more general settings.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Vazirani, V.V.: Approximation algorithms. Springer-Verlag New York, Inc., New York (2001)
Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cambridge University Press (2010)
Bar-Yehuda, R., Even, S.: A linear time approximation algorithm for approximating the weighted vertex cover (1981)
Hochbaum, D.S. (ed.): Approximation algorithms for NP-hard problems. PWS Publishing Co., Boston (1997)
Bshouty, N.H., Burroughs, L.: Massaging a Linear Programming Solution to Give a 2-Approximation for a Generalization of the Vertex Cover Problem. In: Meinel, C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 298–308. Springer, Heidelberg (1998)
Hochbaum, D.S.: The t-Vertex Cover Problem: Extending the Half Integrality Framework with Budget Constraints. In: Jansen, K., Rolim, J.D.P. (eds.) APPROX 1998. LNCS, vol. 1444, pp. 111–122. Springer, Heidelberg (1998)
Bar-Yehuda, R.: Using homogenous weights for approximating the partial cover problem. In: Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1999, pp. 71–75. Society for Industrial and Applied Mathematics, Philadelphia (1999)
Gandhi, R., Khuller, S., Srinivasan, A.: Approximation algorithms for partial covering problems. J. Algorithms 53(1), 55–84 (2004)
Carr, R.D., Fleischer, L.K., Leung, V.J., Phillips, C.A.: Strengthening integrality gaps for capacitated network design and covering problems. In: Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2000, pp. 106–115. Society for Industrial and Applied Mathematics, Philadelphia (2000)
Kearns, M.J.: The computational complexity of machine learning (1990)
Slavík, P.: Improved performance of the greedy algorithm for partial cover. Inf. Process. Lett. 64(5), 251–254 (1997)
Mestre, J.: A primal-dual approximation algorithm for partial vertex cover: Making educated guesses. Algorithmica 55(1), 227–239 (2009)
Bar-Yehuda, R., Flysher, G., Mestre, J., Rawitz, D.: Approximation of Partial Capacitated Vertex Cover. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 335–346. Springer, Heidelberg (2007)
Charikar, M., Khuller, S., Mount, D.M., Narasimhan, G.: Algorithms for facility location problems with outliers. In: Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2001, pp. 642–651. Society for Industrial and Applied Mathematics, Philadelphia (2001)
Chen, K.: A constant factor approximation algorithm for k-median clustering with outliers. In: Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2008, pp. 826–835. Society for Industrial and Applied Mathematics, Philadelphia (2008)
Garg, N.: Saving an epsilon: a 2-approximation for the k-mst problem in graphs. In: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing, STOC 2005, pp. 396–402. ACM, New York (2005)
Golovin, D., Nagarajan, V., Singh, M.: Approximating the k-multicut problem. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, SODA 2006, pp. 621–630. ACM, New York (2006)
Vondrák, J., Chekuri, C., Zenklusen, R.: Submodular function maximization via the multilinear relaxation and contention resolution schemes. In: STOC, pp. 783–792 (2011)
Călinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM J. Comput. 40(6), 1740–1766 (2011)
Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652 (1998)
Carnes, T., Shmoys, D.: Primal-Dual Schema for Capacitated Covering Problems. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp. 288–302. Springer, Heidelberg (2008)
Hochbaum, D.S.: Approximation algorithm for the weighted set covering and node cover problems (1980) (unpublished manuscript)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bera, S.K., Gupta, S., Kumar, A., Roy, S. (2013). Approximation Algorithms for the Partition Vertex Cover Problem. In: Ghosh, S.K., Tokuyama, T. (eds) WALCOM: Algorithms and Computation. WALCOM 2013. Lecture Notes in Computer Science, vol 7748. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36065-7_14
Download citation
DOI: https://doi.org/10.1007/978-3-642-36065-7_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36064-0
Online ISBN: 978-3-642-36065-7
eBook Packages: Computer ScienceComputer Science (R0)