Skip to main content

A Novel Efficient Approach for Solving the Art Gallery Problem

  • Conference paper
WALCOM: Algorithms and Computation (WALCOM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7748))

Included in the following conference series:

Abstract

In this paper, we consider the Art Gallery Problem (AGP) that asks for the minimum number of guards placed in a polygon to oversee the whole polygon. The AGP is known to be NP-hard even for very restricted special cases. This paper describes a primal-dual algorithm based on continuous optimization techniques for solving large-scale instances of the Art Gallery Problem. More precisely, the algorithm is a combination of methods from computational geometry, linear programming (LP), and Difference of Convex functions (DC) programming. The structure of the algorithm permits to provide lower and upper bounds on the minimum number of guards. In order to evaluate the algorithm, we measure its performance by solving some standard test instances including some non-orthogonal polygons with holes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amit, Y., Mitchell, J.S.B., Packer, E.: Locating Guards for Visibility Coverage of Polygons. In: ALENEX, pp. 120–134 (2007)

    Google Scholar 

  2. Bottino, A., Laurentini, A.: A nearly optimal sensor placement algorithm for boundary coverage. Pattern Recognition 41(11), 3343–3355 (2008)

    Article  MATH  Google Scholar 

  3. Chvátal, V.: A Combinatorial Theorem in Plane Geometry. Journal of Combinatorial Theory (B) 18, 39–41 (1975)

    Article  MATH  Google Scholar 

  4. Computational Geometry Algorithms Library, http://www.cgal.org

  5. Couto, M.C., de Rezende, P.J., de Souza, C.C.: An Exact and Efficient Algorithm for the Orthogonal Art Gallery Problem. In: SIBGRAPI 2007: Proceedings of the XX Brazilian Symposium on Computer Graphics and Image Processing, pp. 87–94. IEEE Computer Society, Washington, DC (2007)

    Google Scholar 

  6. Couto, M.C., de Souza, C.C., de Rezende, P.J.: Experimental Evaluation of an Exact Algorithm for the Orthogonal Art Gallery Problem. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 101–113. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Couto, M.C., de Rezende, P.J., de Souza, C.C.: An Exact Algorithm for an Art Gallery Problem. Technical report, Institute of Computing, University of Campinas (November 2009)

    Google Scholar 

  8. Fisk, S.: A Short Proof of Chvátal’s Watchman Theorem. Journal of Combinatorial Theory (B) 24, 374–375 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lee, D.T., Lin, A.K.: Computational Complexity of art gallery problems. IEEE Transactions on Information Theory 32(2), 276–282 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  10. Le Thi, H.A., Pham Dinh, T., Muu, L.D.: Exact penalty in DC programming. Vietnam Journal of Mathematics 27, 169–178 (1999)

    MathSciNet  MATH  Google Scholar 

  11. Le Thi, H.A., Moeini, M., Pham Dinh, T.: Portfolio Selection under Downside Risk Measures and Cardinality Constraints based on DC Programming and DCA. Computational Management Science 6(4), 477–501 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Klawe, M., Kleitman, D.: Traditional art galleries require fewer watchmen. SIAM Journal on Algebraic and Discrete Methods 4(2), 194–206 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kröller, A., Baumgartner, T., Fekete, S., Schmidt, C.: Exact Solutions and Bounds for General Art Gallery Problems. To appear in Journal of Experimental Algorithms

    Google Scholar 

  14. O’Rourke, J.: Art Gallery Theorems and Algorithms. Oxford University Press, New York (1987)

    MATH  Google Scholar 

  15. Pham Dinh, T., Le Thi, H.A.: Convex analysis approach to d.c. programming: Theory, Algorithms and Applications. Acta Mathematica Vietnamica. Dedicated to Professor Hoang Tuy on the Occasion of his 70th Birthday 22(1), 289–355 (1997)

    Google Scholar 

  16. Pham Dinh, T., Le Thi, H.A.: DC optimization algorithms for solving the trust region subproblem. SIAM Journal on Optimization 8, 476–505 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Eidenbenz, S., Stamm, C., Widmayer, P.: Inapproximability results for guarding polygons and terrains. Algorithmica 31, 79–113 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kröller, A., Moeini, M., Schmidt, C. (2013). A Novel Efficient Approach for Solving the Art Gallery Problem. In: Ghosh, S.K., Tokuyama, T. (eds) WALCOM: Algorithms and Computation. WALCOM 2013. Lecture Notes in Computer Science, vol 7748. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36065-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36065-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36064-0

  • Online ISBN: 978-3-642-36065-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics