Skip to main content

Big Data Interpolation an Efficient Sampling Alternative for Sensor Data Aggregation

(Extended Abstract)

  • Conference paper
Algorithms for Sensor Systems (ALGOSENSORS 2012)

Abstract

Given a large set of measurement sensor data, in order to identify a simple function that captures the essence of the data gathered by the sensors, we suggest representing the data by (spatial) functions, in particular by polynomials. Given a (sampled) set of values, we interpolate the datapoints to define a polynomial that would represent the data. The interpolation is challenging, since in practice the data can be noisy and even Byzantine, where the Byzantine data represents an adversarial value that is not limited to being close to the correct measured data. We present two solutions, one that extends the Welch-Berlekamp technique in the case of multidimensional data, and copes with discrete noise and Byzantine data, and the other based on Arora and Khot techniques, extending them in the case of multidimensional noisy and Byzantine data.

Partially supported by a Russian Israeli grant from the Israeli Ministry of Science and Technology #85387301-“Algorithmic approaches to energy savings” and the Russian Foundation for Basic Research, the Rita Altura Trust Chair in Computer Sciences, the Lynne and William Frankel Center for Computer Sciences, Israel Science Foundation (grant number 428/11), Cabarnit Cyber Security MAGNET Consortium, Grant from the Institute for Future Defense Technologies Research named for the Medvedi of the Technion, MAFAT, and Israeli Internet Association.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms, vol. 8. Addison-Wesley Publishing Company (1974)

    Google Scholar 

  2. Arora, S., Khot, S.: Fitting algebraic curves to noisy data. In: STOC, pp. 162–169 (2002)

    Google Scholar 

  3. Bernstein, S.: Demonstration du theoreme de Weierstrass, fondee sur le calcul des probabilities. Communications of the Kharkov Mathematical Society 2(13), 1–2 (1912-1913)

    Google Scholar 

  4. Bishop, E.: A generalization of the Stone Weierstrass theorem. Pacific Journal of Mathematics 11(3), 777–783 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  5. Clenshow, C.W., Hayes, J.G.: Curve and Surface Fitting. J. Inst. Maths Applics. 1, 164–183 (1965)

    Article  Google Scholar 

  6. Daltrophe, H., Dolev, S., Lotker, Z.: Data Interpolation, An Efficient Sampling Alternative for Big Data Aggregation. The Lynne and William Frankel Center of Computer Science of Ben-Gurion University of the Negev, Technical Report 13-01 (September 2012)

    Google Scholar 

  7. Davis, P.J.: Interpolation and approximation. Dover (1975)

    Google Scholar 

  8. de Boor, C., Ron, A.: Computational aspects of polynomial interpolation in several variables. Math. Comp. 58, 705–727 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ditzian, Z.: Multivariate Bernstein and Markov inequalities. Journal of Approximation Theory 70(3), 273–283 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Faugére, J.C.: A new efficient algorithm for computing Gröbner base. Journal of Pure and Applied Algebra 139(1-3), 61–88 (1999)

    Google Scholar 

  11. Guenther, N.: Approximation by spline functions. Springer, Berlin (1989)

    MATH  Google Scholar 

  12. Hilbert, M., Lepez, P.: The World’s Technological Capacity to Store, Communicate, and Compute Information. Science 332(6025), 60–65 (2011)

    Article  Google Scholar 

  13. Jesus, P., Baquero, C., Almeida, P.S.: A Survey of Distributed Data Aggregation Algorithms. CoRR, abs/1110.0725 (2011)

    Google Scholar 

  14. Kingsley, E.H.: Bernstein polynomials for functions of two variables of class C (k). Proceedings of the American Mathematical Society, 64–71 (1951)

    Google Scholar 

  15. Lynch, C.: How do your data grow? Nature 455, 28–29 (2008)

    Article  Google Scholar 

  16. Rajagopalan, R., Varshney, P.K.: Data aggregation techniques in sensor networks: a survey. IEEE Commun. Surveys Tutorials 8(4) (2006)

    Google Scholar 

  17. Rivlin, T.J.: An introduction to the approximation of function. Blaisdell publishing company (1969)

    Google Scholar 

  18. Saniee, K.: A Simple Expression for Multivariate Lagrange Interpolation. SIAM Undergraduate Research Online 1(1) (2008)

    Google Scholar 

  19. Sudan, M.: Decoding of Reed Solomon codes beyond the error-correction bound. Journal of Complexity 13(1), 180–193 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tenbusch, A.: Two-dimensional Bernstein polynomial density estimators. Metrika 41(1), 233–253 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Vitale, R.A.: A Bernstein polynomial approach to density estimation. Statistical Inference and Related Topics 2, 87–100 (1975)

    MathSciNet  Google Scholar 

  22. Welch, L.R., Berlekamp, E.R.: Error correction for algebraic block codes. US Patent 4 633 470 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Daltrophe, H., Dolev, S., Lotker, Z. (2013). Big Data Interpolation an Efficient Sampling Alternative for Sensor Data Aggregation. In: Bar-Noy, A., Halldórsson, M.M. (eds) Algorithms for Sensor Systems. ALGOSENSORS 2012. Lecture Notes in Computer Science, vol 7718. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36092-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36092-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36091-6

  • Online ISBN: 978-3-642-36092-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics