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Abstract. Bounded Distance Decoding (BDD) is a basic lattice prob-
lem used in cryptanalysis: the security of most lattice-based encryption
schemes relies on the hardness of some BDD, such as LWE. We study
how to solve BDD using a classical method for finding shortest vectors
in lattices: enumeration with pruning speedup, such as Gama-Nguyen-
Regev extreme pruning from EUROCRYPT ’10. We obtain significant
improvements upon Lindner-Peikert’s Search-LWE algorithm (from CT-
RSA ’11), and update experimental cryptanalytic results, such as attacks
on DSA with partially known nonces and GGH encryption challenges.
Our work shows that any security estimate of BDD-based cryptosystems
must take into account enumeration attacks, and that BDD enumeration
can be practical even in high dimension like 350.

1 Introduction

There is growing interest in cryptography based on hard lattice problems (see
the survey [11]). The field started with the seminal work of Ajtai [1] back in
1996, and recently got a second wind with Gentry’s breakthrough work [7] on
fully-homomorphic encryption. It offers asymptotical efficiency, potential re-
sistance to quantum computers and new functionalities. Most of the provably-
secure lattice-based constructions are based on either of the following two
average-case problems:

– the Small Integer Solutions (SIS) problem proposed by Ajtai [1], which
allows to build one-way functions, collision-resistant hash functions, sig-
nature schemes and identification schemes: see [11].

– the Learning with Errors (LWE) problem introduced by Regev [17] (see
the survey [18]), which allows to build public-key encryption [17,16], and
more powerful primitives such as ID-based encryption [8] and even fully-
homomorphic encryption [3].

Both SIS and LWE are provably as hard as certain worst-case lattice problems
(see [1,11] for SIS, and [17,16] for LWE), which allows to design many cryp-
tographic schemes with security related to the hardness of lattice problems,
without actually dealing explicitly with lattices.
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Due to the importance of LWE, it is very important to know what are
the best attacks on LWE, especially if one is interested in selecting concrete
parameters. And this issue is independent of LWE (quantum or not) reduc-
tions [17,16] to lattice problems. At CT-RSA ’11, Lindner and Peikert [10] gen-
eralized Babai’s Nearest Plane algorithm [2] to solve Bounded Distance De-
coding (BDD), and claimed that this was the best attack known on Search-
LWE. Given a lattice and a target vector unusually close to the lattice, BDD
asks to find the closest lattice vector to the target: this basic lattice problem
has many applications in cryptanalysis (see [14]), and LWE is simply a partic-
ular case of BDD. Despite its importance, it is not obvious at the moment what
is the best algorithm for solving BDD in practice: several parameters impact
the answer, e.g. the dimension, the size and shape of the error error. Until now,
the largest BDD cryptanalytical instances ever solved in practice were tackled
using the so-called embedding method that heuristically reduces BDD to the
unique-shortest vector problem (USVP) (see e.g. [13]). And in the past few
years, there has been significant process in practical lattice reduction [6,4].

Our Results. We present lattice attacks on Search-LWE which are significantly
better than the Lindner-Peikert attack [10]: in practice, the speedup can be
as big as 232 for certain parameters considered in [10] (see Table 1). First, we
revisit the Lindner-Peikert BDD algorithm (which turns out to be essentially
Schnorr’s random sampling [19]) by rephrasing it in the pruned-enumeration
framework of Gama-Nguyen-Regev (GNR) [6]. This allows us to present a
simple randomized variant which already performs much better than the orig-
inal LP algorithm [10] in the case of LWE, independently of the efficiency of
lattice reduction: our randomization is similar to GNR’s extreme pruning [6],
i.e. we use several random reduced bases.

Next, we consider GNR pruned-enumeration algorithms [6] to solve BDD:
this provides even better attacks on Search-LWE, and seems to be the method
of choice in practice for the general BDD case. We illustrate this point by
reporting improved experimental results for attacks on DSA with partially
known nonces [15] and the solution of GGH encryption challenges [13,9].
Though enumeration is a classical method to solve BDD, it was unknown
how efficient in practice was GNR pruned-enumeration in BDD applications.
In the DSA case, pruned enumeration can recover the DSA secret key in a few
hours, given each 2 least significant bits of the nonces corresponding to 100
DSA signatures: previously, the best lattice experiment [15] required 3 bits.
For GGH encryption challenges, we provide the first partial secret-key recov-
ery in dimensions 200-300: this is a proof-of-concept, and the rest of the se-
cret key could easily be recovered by simply repeating our experiments a few
times. And we re-solved the 350-dimensional message-recovery challenge us-
ing much weaker lattice reduction: in this case, enumeration is clearly prefer-
able to the embedding method, even in very high dimension like 350.

Our work shows that any security estimate on BDD must take into ac-
count enumeration attacks, and that the Lindner-Peikert BDD algorithm [10]



Solving BDD by Enumeration: An Update 3

does not seem to offer any practical advantage over GNR pruning [6], despite
having appeared later.

Road Map. The paper is organized as follows. In Section 2, we provide back-
ground. In Section 3, we revisit the Lindner-Peikert algorithm and present
our randomized variant. Finally, in Section 4, we consider GNR pruned enu-
meration [6] to solve BDD, and apply it to LWE, GGH encryption challenges
and attacks on DSA with partially known nonces. In Appendix, we provide
pseudo-code for BDD enumeration.

2 Background

We use row notation for vectors. We denote by ‖v‖ the Euclidean norm of a
vector v, and by Ballm(R) the m-dimensional closed ball of radius R, whose

volume is Vm(R) ∼ (
√

2πe
m )mRm. We use Sm−1 to denote the m-dimensional

unit sphere. The fundamental parallelepipedP1/2(B) of a matrix B = (b1, . . . , bm)

is {∑m
i=1 xibi : − 1

2 ≤ xi < 1
2}. The volume vol(L) of a lattice L is the m-

dimensional volume of P1/2(B) for any basis B of L.

Orthogonalization. The Gram-Schmidt orthogonalization of B is denoted by
B∗ = (b∗1 , b∗2 , . . . , b∗m), where b∗i = πi(bi), with πi being the orthogonal pro-
jection over (b1, b2, . . . , bi−1)

⊥. Thus, πi(L) is an (m + 1 − i)−dimensional
lattice generated by the basis (πi(bi), . . . , πi(bm)) with volume vol(πi(L)) =

∏m
j=i

∥∥∥b∗j
∥∥∥.

Gaussian Heuristic. The Gaussian Heuristic provides a heuristic estimate on
the number of lattice points inside a set as follows: Given a “nice” lattice L and
a “nice” set S, the number of points in S ∩ L is heuristically ≈ vol(S)/vol(L).

Lattice reduction. Lattice reduction algorithms aim at finding bases with short
and nearly orthogonal vectors. Their output quality is usually measured by
the Hermite factor ‖b1‖/(vol(L))

1
m , where b1 is the first vector of the output

basis. The experiments of Gama and Nguyen [5] show that the Hermite factor
of the best algorithms known is exponential δm in the dimension m in prac-
tice, and the recent work of Chen and Nguyen [4] provides a correspondence
between the exponentiation base δ (the root Hermite factor) and the running
time of the best state-of-the-art implementation (BKZ 2.0). This is related to
the geometric series assumption (GSA) proposed by Schnorr [20]: for fixed
parameters, the norms of the Gram-Schmidt vectors b∗i decrease roughly geo-
metrically with i, say

∥∥b∗i
∥∥ /
∥∥b∗i+1

∥∥ ≈ q, in which case the root Hermite factor
δ is ≈ √q. In [10], Lindner and Peikert used different running-time estimates
of lattice reduction than [4]:
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– One is a numerical extrapolation based on their experiments with the
BKZ implementation of the NTL library. However, NTL’s implementa-
tion of BKZ dates back from 1997 and does not take into account recent
progress, such as extreme pruning [6]. The state-of-the-art implementation
of BKZ developed by Chen and Nguyen [4] achieves several exponential
speedups compared to NTL’s implementation.

– The other one is used in the tables of [10]. It is simply a conservative lower
bound of the first one. They divide the running time by some arbitrary
(large) constant, and change (conservatively) the slope of the curve.

We believe it is preferable to use the Chen-Nguyen estimates [4], but any com-
parison with the LWE algorithm of [10] must also take into account the lattice
reduction estimates of [10] for completeness.

Discrete Gaussian Distribution. Let s > 0 be real. The discrete (centered) Gaus-
sian distribution over L has density DL,s(x) = ρs(x)

ρs(L) where x ∈ L, ρs(x) =

e−π‖x/s‖2
and ρs(L) = ∑y∈L ρs(y). Over Zn, most of the mass is within the

ball of radius O(s
√

n).

Bounded Distance Decoding (BDD). Given L and a target t very “close” to L,
BDD asks to find u ∈ L minimizing ‖u− t‖. There are many ways to formalize
what is meant by very “close”: here, we assume that there exists a unique
u ∈ L such that ‖u− t‖ ≤ γvol(L)1/m for some small given γ > 0: the smaller
γ, the easier BDD. The vector u− t is called the BDD error.

The Learning with Errors problem (LWE). The input of LWE is a pair (A, t =
sA + e) where A ∈ Zn×m

q and s ∈ Zn
q are chosen uniformly at random,

e ∈ Zm
q is chosen according to some public distribution χ depending on a

parameter α ∈ (0, 1). In the original LWE article [17], χ is the integral round-
ing of a continuous Gaussian distribution: namely, χ is the distribution of
the random variable bqXc mod q, where X is a (continuous) normal variable
with mean 0 and standard deviation α/

√
2π reduced modulo 1. The Lindner-

Peikert article [10] uses instead the discrete Gaussian distribution χ = DZm ,αq,
and mention (without proof) that LWE hardness results also hold for this LWE
variant.

Given (A, t), Search-LWE asks to recover s, while Decision-LWE asks to
distinguish (A, t) from a uniformly random (A, t). Regev [17] proved that
if αq ≥ 2

√
n, Search-LWE is at least as hard as quantumly approximating

(Decision)-SVP or SIVP to within Õ(n/α) in the worst case for dimension n.
Under suitable constraints on LWE parameters, Search-LWE can be reduced
to Decision-LWE [17,16].

Search-LWE can be viewed as a BDD-instance in the m-dimensional lattice
Λq(A) = {y ∈ Zm : y = sA mod q for s ∈ Zn

q}, and with BDD error e
(provided that α is sufficiently small). With overwhelming probability over
A, vol(Λq(A)) = qm−n. This standard lattice attack can be improved using
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the so-called sublattice attack (see [5,11]), which replaces m by some m′ ≤
m to optimize the use of current reduction algorithms. Given a root Hermite

factor δ, we expect to achieve
∥∥b∗m′

∥∥ ≈ δ−m′q
m′−n

m′ , where m′ =
√

n log q/ log δ
maximizes the norm of b∗m′ . As long as m′ < m, one applies a lattice attack to
the sublattice with dimension m′, otherwise one uses the full lattice.

Beta distribution. The density function of the Beta distribution of parameters
a, b > 0 is xa−1(1− x)b−1/B(a, b), where B(a, b) is the beta function Γ(a)Γ(b)

Γ(a+b) .
The corresponding cumulative distribution function is the regularized incom-
plete beta function Ix(a, b) = 1

B(a,b)

∫ x
0 ua−1(1−u)b−1du, x ∈ [0, 1]. If (u1, u2, . . . , um)

is chosen uniformly at random from the unit sphere Sm−1, then ∑k
i=1 u2

i has
distribution Beta(k/2, (m− k)/2).

3 Lindner-Peikert’s NearestPlanes Algorithm Revisited

In this section, we revisit the Lindner-Peikert NearestPlanes algorithm [10]
(NP), which is a simple variant of Babai’s algorithm [2] to solve BDD, and
which turns out to be similar to Schnorr’s random sampling [19]. We establish
a connection with Gama-Nguyen-Regev’s pruned enumeration [6], which al-
lows us to randomize and generalize the NP algorithm.

3.1 Babai’s Nearest Plane Algorithm

Since LWE (A, t = sA+ e) is a BDD instance for the lattice Λq(A), the simplest
method is Babai’s (deterministic polynomial-time) Nearest Plane algorithm,
see Alg. 1.

Algorithm 1 Babai’s Nearest Plane algorithm [2]

Input: A basis B = (b1, . . . , bm) ∈ Qm of a lattice L and a target point t ∈ Qm.
Output: v ∈ L such that v− t ∈ P1/2(B∗).
1: v← 0
2: For i← m, ..., 1
3: Compute the integer c closest to 〈b∗i , t〉/〈b∗i , b∗i 〉
4: t← t− cbi,v← v + cbi
5: Return v

Babai’s algorithm outputs a lattice vector v relatively close to the input
target vector t. More precisely, v is the unique lattice vector such that v− t ∈
P1/2(B∗). If the input is a BDD instance such that the closest lattice point to t
is v ∈ L, then Babai’s algorithm solves BDD if and only if v− t ∈ P1/2(B∗),
i.e.

∀i ∈ {1, . . . , m} |〈e, b∗i 〉| < 〈b∗i , b∗i 〉/2. (1)
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In the LWE case, we can rigorously define a success probability, even though
Babai’s algorithm is deterministic: the probability of v− t ∈ P1/2(B∗) is with
respect to LWE parameter generation, i.e. the generation of t. Unfortunately,
one does not know how to compute this probability efficiently. Instead, Lind-
ner and Peikert [10] compute the success probability in an idealized model
(which we call CLWE for “continuous” LWE) where the LWE error distribu-
tion χ is replaced by a continuous Gaussian distribution with mean 0 and
standard deviation αq/

√
2π, and claim (without proof) that the actual proba-

bility is very close.
By definition of CLWE, the distribution of the error e is spherical, which

implies because B∗ has orthogonal rows:

Pr[e ∈ P1/2(B∗)] =
m

∏
i=1

Pr[|〈e, b∗i 〉| < 〈b∗i , b∗i 〉/2] =
m

∏
i=1

erf

(
‖b∗i ‖

√
π

2s

)
,

where erf(x) = 2√
π

∫ x
0 e−y2

dy. Typically, b∗m is exponentially shorter than b1,
which makes the probability of e ∈ P1/2(B∗) very small.

3.2 The NearestPlanes Algorithm

Lindner and Peikert [10] presented a simple generalization of Babai’s nearest
plane algorithm, by adding some exhaustive search to increase the success
probability, at the expense of the running time. Instead of choosing the closest
plane in every i-th level, the NearestPlanes algorithm (Alg. 2) enumerates di
distinct planes.

Algorithm 2 NearestPlanes Algorithm [10]

Input: A lattice basis B = (b1, . . . , bm), a vector d = (d1, d2, . . . , dm) ∈ Zm, a target
point t ∈ Qm.

Output: A set of ∏m
i=1 di distinct lattice vectors in L(B) close to t.

1: if m = 0 then
2: Return 0
3: else
4: Compute the dm integers c1, c2, . . . , cdm ∈ Z closest to 〈b∗m, t〉/〈b∗m, b∗m〉
5: Return

⋃
i∈[dm ]

(cibm + NearestPlanes({b1, . . . , bm−1, (d1, . . . , dm−1), t− cibm})

6: end if

Compared to Babai’s nearest plane algorithm, the NearestPlanes algorithm
is also deterministic, its running time is essentially multiplied by ∏ di, and its
CLWE success probability (i.e. under the assumption that the LWE distribu-

tion is continuous) increases to: ∏m
i=1 erf

(
di‖b∗i ‖

√
π

2s

)
. In fact, the algorithm
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succeeds if and only if e ∈ P1/2(diag(d) · B∗), where diag(d) is the m × m
diagonal matrix formed by the di’s.

Lindner and Peikert [10] briefly compared their algorithm to the distin-
guisher of Micciancio and Regev [11]. Their data suggests that their algorithm
is better for most parameters and success probability, with larger improve-
ments in the high-advantage regime.

3.3 Connection with Schnorr’s Random Sampling

We note that the NP algorithm is very similar to Schnorr’s random sampling [19]
from STACS ’03. Schnorr’s method aims at finding short vectors, but it can
easily be adapted to BDD: in the BDD setting, there is an integer parameter
u ∈ {1, . . . , m}, and one computes all lattice vectors v ∈ L such that v− t ∈
P(∆B∗)) where ∆ is the m×m diagonal matrix formed by m− u coefficients
equal to 1, followed by u coefficients equal to 2. In other words, Schnorr’s
method corresponds to the particular case of NP where (d1, . . . , dm) = (1, 1, . . . ,
1, 2, 2, . . . , 2), the number of 2’s being exactly u. However, Schnorr’s analysis
is very different from [10] and uses a more debatable model: it assumes that
the 2u vectors v − t are uniformly distributed over P(∆B∗)), which cannot
actually hold.

3.4 Connection with Lattice Enumeration

We note that both Babai’s algorithm and the NP algorithm can be viewed as
a pruned enumeration but with a different kind of pruning rule than Gama et
al. [6]. Let us recall what is lattice enumeration. Given a target t ∈ Qm, a basis
B = (b1, . . . , bm) of a lattice L and a BDD radius R, an enumeration algorithm
enumerates all lattice vectors v ∈ L such that ‖v − t‖ ≤ R, and selects the
closest one to solve BDD. This is done by searching over a huge tree defined
as follows: for each level k ∈ {0, . . . , m} where k = 0 corresponds to the root
and k = m corresponds to the leaves, the tree nodes of level k are all vectors
v ∈ L such that ‖πm+1−k(t− v)‖ ≤ R. This means that the number of nodes at
level k is exactly the number of points in the projected lattice πm+1−k(L) which
are within distance R of πm+1−k(t), which can be heuristically estimated as
Hk = Vk(R)/vol(πm+1−k(L)) by the Gaussian Heuristic: such estimates seem
to be fairly accurate in practice [6].

Pruned enumeration was first proposed by Schnorr and Euchner [21] to
cut down some branches in the enumeration tree to decrease the time com-
plexity, at the cost of potentially missing the solution vector. It was hoped
that the overall cost (taking into account failure probability) would decrease.
An algorithmic description of pruned enumeration for BDD is given in Ap-
pendix A. The first rigorous analysis of pruned enumeration was only recently
given by Gama, Nguyen and Regev [6], where a framework generalizing [21]
was proposed. For every tree level k, they used a variable enumeration radius
‖πm+1−k(v− t)‖ ≤ Rk such that R1 ≤ R2 ≤ · · · ≤ Rm. This means that the
pruned tree is a subset of the enumeration tree.
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Babai’s algorithm and the NP algorithm also only consider a subset of the
enumeration tree, but it is a different subset than [6]. More precisely, Babai’s
algorithm looks at a single branch of the enumeration tree with radius R =

1
2

√
m
∑

i=1

∥∥b∗i
∥∥2. Since the NP algorithm enumerates all lattice points inside the

(orthogonal) parallelepiped P1/2(diag(d) · B∗) centered at t, it actually con-

siders the radius R = 1
2

√
m
∑

i=1
d2

i

∥∥b∗i
∥∥2. Then, among all the nodes v ∈ L of

the enumeration tree at level k, it only considers those such that |ξi(v− t)| ≤
di‖b∗i ‖/2 for all i ≥ m + 1− k, where ξi(x) denotes the i-th coordinate of x in
the normalized Gram-Schmidt basis (b∗1/

∥∥b∗1
∥∥ , · · · , b∗m/ ‖b∗m‖), i.e. ξi(x) =

〈x, b∗i 〉/‖b∗i ‖.
In other words, GNR pruning [6] only keeps the nodes with bounded pro-

jections ‖πm+1−k(v− t)‖ ≤ Rk, whereas NP [10] only keeps the nodes with
bounded coordinates |ξi(v − t)|. In some sense, NP can be viewed as a sec-
ondary pruning of GNR: if the coordinates are all bounded, then so are the
projections, which means that the NP tree is a subset of some GNR tree.

3.5 Randomizing the NearestPlanes Algorithm

This connection of NP with enumeration allows us to revisit and improve
NP. First, NP can be generalized by selecting arbitrary bounds on coordinates,
namely |ξi(v− t)| ≤ Ri instead of |ξi(v− t)| ≤ di‖b∗i ‖/2, where the bounds
R1, . . . , Rm are parameters which are not necessarily multiples of the ‖b∗i ‖/2’s.

Second, we perform a randomization similar to the one of extreme prun-
ing [6] compared to basic pruning. More precisely, we randomize the algo-
rithm by repeating several times the basic algorithm with different random-
ized reduced bases. If we use ` different bases, then the running time is roughly
multiplied by ` (depending on the exact reduction time compared to the NP
exhaustive search), but the success probability is also heuristically multiplied
by `. This gives rise to Alg. 3, and allows more optimization. In particular, the

Algorithm 3 Our Randomized NearestPlanes Algorithm

Input: A lattice basis B, a vector d = (d1, d2, . . . , dm), a target point t ∈ Qm, and a
number ` of iterations.

Output: A set of candidate lattice vectors in L(B) close to t.
1: Repeat ` times
2: Randomize the input basis, and apply lattice reduction to obtain a (random) re-

duced basis B′

3: Run the NearestPlanes algorithm on (B′, d, t)

numerical data from [10, Table 3] is far from optimal, since the running times



Solving BDD by Enumeration: An Update 9

of basis reduction and enumeration are not totally balanced. When the enu-
meration time is longer than the reduction time, we can decrease the total cost
by decreasing the number of enumerations. We can obtain better trade-offs
because the randomized algorithm has more freedom than the original one.

This can be proved by the simple analysis below. Since erf(a) < erf(c·a)
c (c <

1), and we use cdi instead of di, the algorithm is 1/c times faster than the
original one, while the success probability is higher than a c-fraction of the
original one. Thus, by choosing different bases to repeat the algorithm several
times, the total cost will actually decrease. In [10], no information was given
on how to choose the di’s. We performed an exhaustive search in the proper
range to find an optimal (d1, d2, . . . , dm) for the randomized algorithm, which
yielded a much more efficient attack.

A numerical comparison between the NP algorithm [10] and our random-
ized variant is given in Table 1 below. This shows that randomization can pro-
vide significant speedups, as high as 232 e.g. n = 320. Basis reduction time es-
timates are taken from [10], where it is estimated that lg(Trecd) =

1.8
lg(δ) − 110.

Columns marked with ”NearestPlanes” are from [10], while columns with
”Randomized-NP” correspond to our randomized variant. When we search
for the best root Hermite constant, we increment by 0.0001 each time as in
[10]. Because the estimates of [10] for lattice reduction are debatable, we use
the estimates of Chen and Nguyen [4] to update the cost estimates of the attack
in Table 2.

Adv NearestPlanes [10] Randomized-NP Log
n q s (log) δ Red [10] Enum Cost δ Red [10] Enum Pr log(Nb Cost spe-

of bases) edup
0 1.0089 30.8 47 32 1.0104 10.6 27 −9.6 9.6 21.2 10.8

128 2053 6.7 −32 1.0116 < 0 13 < 0 1.0114 < 0 17 −25.5 0 < 0
−64 1.013 < 0 1 < 0

0 1.0067 76.8 87 78 1.0077 52.6 68.9 −12 12 65.6 12.4
192 4093 8.9 −32 1.0083 40.9 54 42

−64 1.0091 27.7 44 29
0 1.0052 130.5 131 132 1.006 98.6 115 −11.8 11.8 111.3 20.7

256 4093 8.3 −32 1.0063 88.7 87 90 1.0065 82.6 99 −34 2 85.6 4.4
−64 1.0068 74.1 73 75 1.007 68.9 85 −67 3 72.9 2.1

0 1.0042 187.7 163 189 1.005 140.2 156.9 −15.7 15.7 156.9 32.1
320 4093 8 −32 1.0052 130.6 138 132 1.0053 126 143 −34.7 2.7 129.7 2.3

−64 1.0055 117.5 117 119 1.0056 113.4 127 -61.6 0 114.4 4.6
Table 1: NP vs. randomized NP. δ is the root Hermite factor. Adv is the target
success probability. log(Nb of bases) is the number of bases needed to reach
the target success probability in base-2 logarithm. Red and Cost indicate the
lattice reduction time (using [10]) and total time in base-2 logarithm seconds
respectively. Enum and Pr are respectively the number ∏n

i=1 di of enumerations
and success probability, in base-2 logarithm.
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4 Solving BDD by (GNR) Pruned Enumeration

In this section, we study how BDD can be solved in practice using the pruned
enumeration algorithm of Gama, Nguyen and Regev [6] (GNR). Timings given
are for a single 3-Ghz Intel-Core2 core. First, we consider a theoretical appli-
cation to LWE, to compare GNR pruning with our randomized NP algorithm.
Then, we report improved experimental results on two well-known cryptana-
lytical applications of BDD: attacks on DSA with partially known nonces [15]
and attacks on the GGH encryption challenges [13]. In these settings, the best
method known in practice was to use the heuristic embedding method that
transforms BDD into a Unique-SVP instance. Our experiments show that the
embedding method is now outperformed by pruned enumeration, even with-
out taking into account past improvements in lattice reduction algorithms [4];
and we did not find any application where Randomized-NP was better than
pruned enumeration.

4.1 Further background on GNR Pruned Enumeration

We recall additional information on GNR pruned enumeration, to complete
the description of Sect. 3.4. Given a target t ∈ Qm, a basis B = (b1, . . . , bm) of
a lattice L and a BDD radius R, GNR aims at finding the supposedly unique
lattice vector u ∈ L such that ‖u − t‖ ≤ R. To this aim, GNR [6] selects a
bounding function determined by radius R1 ≤ R2 ≤ · · · ≤ Rm = R, and per-
forms a depth-first search of the pruned-enumeration tree defined as follows:
for each level k ∈ {0, . . . , m} where k = 0 corresponds to the root and k = m
corresponds to the leaves, the tree nodes of level k are all vectors u ∈ L such
that ‖πm+1−i(t− u)‖ ≤ Ri for all 0 ≤ i ≤ k. By assumption, there is at most a
single leaf in the tree.

The complexity of the pruned enumeration is equal to the total number of
nodes in the pruned-enumeration tree, up to some polynomial-time factor. To
estimate this number of nodes, GNR [6] introduced the k-dimensional cylinder
intersection defined by R1 ≤ R2 ≤ · · · ≤ Rm as follows:

CR1,R2,...,Rk = {(x1, x2, ..., xk) ∈ Rk, ∀j ≤ k,
j

∑
l=1

x2
l ≤ R2

j }.

GNR apply the Gaussian heuristic to (heuristically) estimate the number of

nodes at depth k by Hk =
vol(CR1,R2,...,Rk

)

∏m
i=m+1−k‖b∗i ‖

. GNR [6] provide efficient algorithms

to estimate vol(CR1,R2,...,Rk ), and therefore Hk. This can be used to find good
bounding functions by numerical optimization. In practice, one considers ei-
ther the linear bounding function defined by Rk =

√
k/mRm, or numerical func-

tions found by numerical optimization.
GNR [6] rigorously defined a success probability, by assuming that the

input basis is a random reduced basis. This probability psucc is the proba-
bility that the closest lattice vector u to t remains in the enumeration tree.
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They explained how to compute this probability in practice, if one assumes
that the BDD error vector t− u is a vector chosen uniformly at random in the
sphere (or ball) of radius R. And they also give theoretical estimates for certain
bounding functions: for instance, psucc = 1/m for linear bounding. The total
cost of pruned-enumeration is roughly equal to:

Tredu + Tnode · N(R1, . . . , Rm, b∗1 , . . . , b∗m)
psucc(R1, . . . , Rm)

,

where Tredu is the basis reduction time, Tnode is the time for enumerating one
node, and N(R1, . . . , Rm, b∗1 , . . . , b∗m) = ∑m

k=1 Hk is the (approximate) number
of nodes.

Though GNR [6] presented the first rigorous framework to analyzed pruned-
enumeration algorithms, it must be stressed that the GNR analysis only holds
for certain settings. For instance, when one wants to solve BDD in practice, it
is often the case that we do not know the exact value of ‖t− u‖, which makes
a theoretical analysis difficult. In this case, we may take for R the expected
value of ‖t− u‖, or an upper bound satisfied with high probability; then pre-
tending that t − u is a vector chosen uniformly at random in the sphere (or
ball) of radius R will only provide a rough estimate of psucc. However, the
distribution of t− u is often known, which allows to compute experimentally
(by sampling) the probability that t − u satisfies a given bounding function,
provided that the probability is not too small. This is the method we used in
our experiments, and this is what we mean by success probability.

4.2 Application to LWE

In this subsection, we provide numerical evidence that pruned enumeration is
better than NP for solving LWE. As mentioned previously, the analysis of [6]
must be adapted, because the LWE noise distribution does not fit the GNR
model: in particular, the exact norm of the noise is not known.

If we assume the CLWE model, the error vector e has continuous Gaus-
sian distribution, then all the coordinates of e with respect to the normalized
Gram-Schmidt basis (b∗m/ ‖b∗m‖ , · · · , b∗1/

∥∥b∗1
∥∥), have Gaussian distribution.

It follows that the success probability is:

psucc = psucc(R1, . . . , Rm) = Pre∼χ(∀j ∈ [1, m],
j

∑
i=1

u2
i ≤ R2

j ),

where χ is the (continuous) noise distribution of CLWE. If psucc is high, we can
use Monte Carlo sampling to compute it numerically. But for extreme prun-
ing, where probabilities are voluntarily chosen very small, this is impractical.
However, we notice that e/ ‖e‖ is uniformly distributed in the unit sphere, by
definition. Hence, if we use a bound Rm such that Pr(‖e‖ > Rm) is negligible,

the probability Pru∼Sm−1(∀j ∈ [1, m], ∑
j
i=1 u2

i ≤
R2

j

R2
m
) can be used as a lower

bound of the actual success probability.
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Table 2 provides numerical comparisons between Randomized-NP and
linear pruning (where the success probability is lower-bounded, with opti-
mized enumeration radius around the expected length of error). As opposed
to Table 1, Table 2 uses Chen-Nguyen estimates [4] for lattice reduction times.
Independently of reduction time estimates, linear pruning is better in practice
than NearestPlanes (even randomized).

Red [4] Adv Randomized-NP Linear Pruning Log
n q s δ (log) (log) Enum (log) Pr (log) Nb. Cost Enum Pr (log) Radius Cost Spe-

(log) of bases factor edup
1.01 18.4 0 35.3 −7.1 7.1 26.6 35.4 −3.9 1.01 23.6 3

128 2053 6.7 1.012 8.2 −32 25.1 −34.5 2.5 11.7
1.013 < 0 −64 10.10 −63.1 0 < 0
1.007 61.8 0 78.7 −3.7 3.7 66.5 74.1 −0.9 1.5 62.8 3.7

192 4093 8.9 1.008 42 −32 48.6 −32 0 42
1.009 28 −64 44.9 −66.1 2.1 31
1.006 95.3 0 112.2 −15.1 15.1 111.4 113 −8.5 0.9 105.5 5.8

256 4093 8.3 1.006 95.3 −32 71.9 −31.6 0 95.3
1.007 62.2 −64 79.2 −77.7 13.7 76.9

Table 2: Randomized-NP vs. Linear Pruning. δ is the root Hermite factor. Red
indicates approximate lattice reduction times from Chen-Nguyen [4] in base-2
logarithm (in seconds). The rest of the data is organized as in Table 1, except
that the enumeration radius chosen for linear pruning is the expected error
length times he square root of Radius factor.

4.3 Application to GGH

In this subsection, we apply pruned-enumeration on the encryption challenges
for the Goldreich-Goldwasser-Halevi cryptosystem [9] (GGH). The lattice di-
mension is either 200, 250, 300, 350 and 400. There are two types of chal-
lenges: key-recovery and message-recovery. Key-recovery can be viewed as
solving m BDD-instances with error vector chosen uniformly at random from
[−4, . . . ,+3]m. To the best of our knowledge, none of these key-recovery chal-
lenges was ever solved. Each message-recovery challenge is a BDD instance
where the error vector is chosen uniformly at random from {−3,+3}m: Nguyen [13]
solved the message-recovery challenges in dimensions 200,250,300 and 350 by
showing how to reduce each such BDD instance to a small number of BDD in-
stances with error in {−1/2,+1/2}m, and solving these easier BDD instances
using the embedding strategy and lattice reduction: BKZ-20 was enough for
dimensions 200-300, but dimension 350 required pruned-BKZ with higher
blocksize 60.

First, we re-solved the GGH-350 message-recovery challenge by using only
a BKZ-20 reduced basis and high-probability pruning, which shows that prun-
ing is better than the well-known embedding method. In this case, the BDD ra-
dius is exactly Rm =

√
m

2 , after applying Nguyen’s trick [13], and the BDD fac-
tor γ is ≈ 0.125. We used a high-probability bounding function defined as fol-
lows: R2

k = min{E(Xk) + 3σ(Xk), 1}R2
m where E and σ denote respectively the
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expectation and standard deviation of the distribution Beta(k/2, (m− k)/2),

namely k
m and

√
k(m−k)

m2(m
2 +1) . The pruned tree contained 1.76× 1011 nodes, very

close to the Gaussian heuristic estimate 1.73× 1011. The error behaved as if it
was uniformly distributed in the sphere of radius Rm: indeed, in both our ex-
periments and in the uniform model, the success probability was≈ 0.92. Note
that the largest GNR experiments [6] used a lattice dimension of 110. Because
enumeration (pruned or not) has a super-exponential running time, one may
have thought that much larger dimensions would be unreachable. However,
our experiments show that dimensions as high as 350 are reachable, provided
that the BDD enumeration radius is sufficiently small.

Next, we recovered several secret-key vectors in dimensions 200, 250 and
300, using pruned-enumeration and BKZ 2.0 [4] as the reduction algorithm:
the experiments are summarized in Table 3, where the Gaussian heuristic
is used to estimate the number of nodes. In these BDD instances, the exact

Dimension 200 250 300 300
BKZ blocksize 60 60 90 90

Bounding function linear linear linear optimized
Estimated Nb of Nodes 800 5.84× 108 7.58× 1010 1.33× 109

Average Nb of Nodes 666 5.93× 108 - 1.35× 109

Success probability 0.0418 0.0409 0.0371 0.0185
Nb of Success 4 11 - 2

Table 3: Key-recovery for GGH Challenges

BDD radius is unknown, but the factor γ is approximately

√
11
2 m

4
√

m ≈ 0.59,
which is more difficult than for the message-recovery challenges. For each
dimension, we computed only one BKZ-reduced basis, and tried to recover as
many secret-key vectors with the same basis: because the success probability
is much lower than 1 for one pruned enumeration, we actually only recov-
ered a fraction of all secret-key vectors, but of course, our experiments show
that one could recover all secret-key vectors simply by repeating our experi-
ments a small number of times. For dimension 300, linear bounding was not
sufficient, so we tried another bounding function by optimization, using the
GNR method [6]: we start with the linear bounding function, then randomly
modify it by small perturbation successively. Using this bounding function,
one pruned-enumeration only takes several minutes. In these experiments,
the enumeration radius was chosen as the expected error length. However,
there is clearly a trade-off if one wants to optimize the total running time: by
selecting a smaller radius, one can decrease the running time of a single enu-
meration, at the expense of the success probability. Fig 1 shows the impact of
varying the enumeration radius around the expected length, on the success
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Fig. 1: Here, the x-coordinate is the ratio between the (squared) enumeration
radius with the (squared) expected length of the error vector. In (b), the y-
coordinate is log2(Number of enumeration nodes/Success probability)

probability and the total cost: here, one obtains slightly better results by in-
creasing the radius. Fig 1 also compares experimental probabilities and costs
with that of a Gaussian modelization where the error vector is chosen with
Gaussian distribution of expectation

√
11
2 m: we see that it is better to compute

experimental probabilities (by sampling the error distribution).

We also tried to solve GGH challenges using Randomized-NP but the per-
formances were worse than pruned enumeration.

4.4 Application to DSA

In this subsection, we apply pruned-enumeration to attack the Digital Signa-
ture Algorithm [12] (DSA) with partially known nonces. Each DSA signature
generation require the use of a one-time key k modulo q, where q is usually a
160-bit prime number. It is well-known (and obvious) that disclosing the full
one-time key k of a single (message,signature) pair allows to recover the DSA
secret key in polynomial time. It is also well-known (but not obvious) that
disclosing ` bits of each one-time key k for several (message,signature) pair
allows to recover the DSA secret key, see e.g. [15]. More precisely, this crypt-
analytical problem can be reduced to the so-called hidden number problem
(HNP), which can itself be reduced to BDD. For any real z, let the symbol | · |q
be |z|q = minb∈Z |z− bq|. APP`,q(n) denotes any rational number r satisfying
|n− r|q ≤ q

2`+1 . The HNP asks to recover α ∈ Zq, given many approximations
ui = APP`,q(αti) where each ti is known and chosen uniformly at random,
for 1 ≤ i ≤ d. The reduction to BDD works as follows. One constructs the
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(d + 1)-dimensional lattice spanned by the following row matrix:

q 0 · · · 0 0

0 q
. . .

...
...

...
. . . . . . 0

...
0 · · · 0 q 0
t1 · · · · · · td

1
2l+1

 (2)

The target vector is u = (u1, u2, . . . , ud, 0). There exists a lattice vector h =

(αt1 + qh1, . . . , αtd + qhd, α
2`+1 ), such that ‖ h− u ‖≤

√
d + 1 q

2`+1 . And finding
h discloses α.

Nguyen and Shparlinski [15] used this attack to recover the DSA secret
key in a few hours, given the ` = 3 least significant bits of each one-time
key for about 100 signatures, but the attack failed for ` = 2. By using BKZ-90
reduction [4] and linear pruning, we were able to attack the ` = 2 case given
about 100 signatures, within a few hours, but the lattice needs to be slightly
changed: indeed, for the GNR analysis to hold, one needs that the error vector
looks like a random vector in the Gram-Schmidt basis; because the shape of
reduced bases is special for these HNP lattices, one needs to modify the right-
bottom coefficient of the row matrix by some scaling factor.

We constructed 100 instances to check the cost and success probability. The
average number of nodes was 1.37× 1010, slightly smaller than the estimated
number of nodes 1.5× 1010. The average actual running time is about 4185 sec-
onds per enumeration. Our experiments solved 23 out of 100 instances, which
means that the running time of a single enumeration needs to be multiplied by
roughly 4, which is a few hours at most. Because the exact length of the error
vector is not known, like in the GGH case, there is a trade-off for choosing the
enumeration radius: Fig. 2 shows the impact when varying the enumeration
radius around the expected length, like Fig. 1. Here, the optimal enumeration
radius is about

√
0.8 ≈ 0.89 smaller than the expected length.
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Algorithm 4 Pruned Enumeration for BDD (BDD version of [6])

Input: A basis B = (b1, . . . , bm), a target vector t = ∑m
i=1 tibi, a bounding func-

tion R2
1 ≤ · · · ≤ R2

m, the Gram-Schmidt matrix µ and the (squared) norms
‖b∗1‖2, . . . , ‖b∗m‖2.

Output: Nothing or the coefficients of a lattice vector v such that the projections of
v− t have norms less than the Ri’s, i.e. ‖πm+1−k(v− t)‖ ≤ Rk for all 1 ≤ k ≤ m.

1: σ← (0)(m+1)×m; r0 = 0; r1 = 1; · · · ; rm = m;ρm+1 = 0
2: for k = m downto 1
3: for i = m downto k + 1 do σi,k ← σi+1,k + (ti − vi)µi,k endfor
4: ck ← tk + σk+1,k // ck ← tk + ∑m

i=k+1(ti − vi)µi,k, centers
5: vk ← bcke // current combination;
6: wk = 1 // jumps;
7: ρk = ρk+1 + (ck − vk)

2 · ‖b∗k‖
2

8: endfor
9: k = 1;

10: while true do
11: ρk = ρk+1 + (ck − vk)

2 · ‖b∗k‖
2 // compute norm squared of current node

12: if ρk ≤ R2
m+1−k (we are below the bound) then

13: if k = 1 then
14: return (v1, . . . , vm); (solution found; program ends)
15: else
16: k← k− 1 // going down the tree
17: rk−1 ← max(rk−1, rk) // to maintain the invariant for j < k
18: for i = rk downto k + 1 do σi,k ← σi+1,k + (ti − vi)µi,k endfor
19: ck ← tk + σk+1,k // ck ← tk + ∑m

i=k+1(ti − vi)µi,k
20: vk ← bcke; wk = 1
21: end if
22: else
23: k← k + 1 // going up the tree
24: if k = m + 1 then
25: return ∅ (there is no solution)
26: end if
27: rk−1 ← k // since vk is about to change, indicate that (i, j) for j < k and i ≤ k are

not synchronized
28: // update vk
29: if vk > ck then vk ← vk − wk else vk ← vk + wk
30: wk ← wk + 1
31: end if
32: end while


