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Abstract

We propose a protocol to exchange Boneh-Boyen short signatures in a fair way and without
relying on a trusted third party. Our protocol is quite practical and is the first of the sort
to the best of our knowledge. Our construction uses a new non-interactive zero-knowledge
(NIZK) argument to prove that a commitment is the encryption of a bit vector. We also
design a NIZK argument to prove that a commitment to a bit vector v = (b1, b2, ..., bκ) is such
that

∑
i∈[κ] bi2

i−1 = θ where θ is the discrete logarithm of some public value D = gθ. These
arguments may be of independent interest.

Key words: Fair exchange, short signatures, gradual release of a secret.

1 Introduction

Nowadays it is more and more common to trade digital goods on the web: E-books, software
licenses, avatar-games currencies like Ultima Online1 to cite a few. Whether these goods are
exchanged on E-bay through Paypal or bought directly to their provider Amazon or Microsoft,
the transaction to be secure requires a trusted third party (TTP). Though it works quite well in
practice, enabling totally distributed and at the same time secure transaction systems is of clear
interest: It would avoid some security issues due to the presence of single points of failure, and also
allow smoother electronic commercial transactions that would not rely on some intermediary. A lot
of these transactions may be captured by the exchange of digital signatures. Suppose for example
you want to buy a software license to some independent developer: Indeed exchanging the software
license as well as the money transfer (digital check) can be modeled by signed messages. However
we face a non-trivial problem. Given that the transaction is made on-line, a malicious participant
may fool his counterpart by not sending his signature or sending some garbage information. A
protocol that prevents such a behavior from a corrupted party is called fair : This means that at
the end of the execution of protocol either both parties obtain the signature they expected or none
does.

1http://en.wikipedia.org/wiki/Ultima Online
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There are two main approaches to solve this problem. On the one hand, one can assume that
both players interact through a TTP. Though this solution does not fit our goal, it is important
to note that an important line of research has focused on designing protocols where the TTP is
only required when “something goes wrong”. These protocols are said to be optimistically fair :
See [1, 25] and [22] for some recent work.

On the other hand, if no TTP exists and we assume that both participants have exactly
the same computational resources, then it is impossible in general to achieve complete fairness
[10]. In [2, 14] was proposed a way to relax the notion of fairness in order to overcome Cleve’s
impossibility result. The idea is to assume that both players have roughly the same amount of time,
so we can achieve partial fairness. Several secure multi-party computations and specific protocols,
like [6, 11, 12, 5, 16], were built on top of this security notion. The recurrent idea behind these
constructions consists in enabling each player to release their secret bit by bit in alternation. Thus,
if a player aborts, the other participant will have “only one bit of disadvantage”. Formalizing this
idea is not an easy task though, in particular because it is hard to reason on the specific amount of
time for the players. This issue was noticed in [19] where authors point out that (1) assigning more
time to the honest party in order to allow him recover his value is somehow artificial as it does not
depend on the participant himself, and (2) implementing such definitions seems to imply the use
of strong assumptions related to the exact time required to solve some computational problem.

In this work we propose a new security definition that still captures the intuition of partial
fairness for the exchange of digital signatures, but without forcing the participants to have access
to almost equal computational resources as proposed in [16]. The idea of our definition is to
compare the probabilities of computing valid signatures on the agreed messages at the end of the
protocol. More precisely, if the adversary aborts the protocol, the honest participant2 will compute
the expected signature by choosing randomly a value from the space of signature candidates, which
is defined by the remaining bits to be obtained. The adversary will keep running its own algorithm
and also output a signature candidate. We say the protocol is secure if the probabilities that each
participant output a valid signature only differ by a polynomial factor. Note that this definition,
like previous ones that circumvent Cleve’s impossibility result [10], allows the adversary to get some
advantage, but it guarantees that this advantage is polynomially bounded. With that definition in
hand we can prove the security of our protocol without having to rely on the strong assumptions
mentioned above. Our protocol is designed to exchange short signatures [4] without the presence
of a TTP. We use bilinear maps as the underlying signature scheme, and also the idea of releasing
gradually each bit of some secret θ that will enable to recover the signature. The security of
our construction relies on complexity assumptions for bilinear maps, namely the κ-Strong Diffie-
Hellman [4], and the κ-Bilinear Diffie-Hellman assumptions [3] and holds in the common reference
string model. As we use non-interactive zero-knowledge proofs of knowledge (ZKPoK) in order to
make the protocol simpler and more efficient, we require the use of random oracle [15] or some
non-black box assumptions [20]. If we like, we can use interactive ZKPoK at a minor expense of
round efficiency.

Our Contributions.

1. We propose a practical protocol for exchanging short signatures [4] without relying on a
TTP. To the best of our knowledge this is the first construction that meets such a goal.

2Note that we need to consider that at least one participant is honest, as otherwise we cannot really avoid that
one of the two adversaries, which are arbitrary polynomial time algorithms, wins.
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Operation # Exp # Mult # BM # Div # Hash

Step 2 EncSigGen 1
Bit Vector commitment κ κ

BV-NIZK 4κ 2κ
BE-NIZK 2κ 2κ− 3 1
ZKPoK 2κ+ 1 κ κ+ 1

Check BV-NIZK κ 4κ
Check BE-NIZK 1 κ− 1 4 2
Check ZKPoK 3κ+ 2 2κ+ 1 κ+ 1

Step 7 EncSigCheck 2 2 2
KeyBitCheck κ κ
EncSigDecrypt 1

Sum 13κ+ 8 11κ− 1 4κ+ 6 3 2κ+ 2

Figure 1: Time complexities of the fair exchange protocol. This figure shows the number
of cryptographic operations performed by each participant during the whole protocol. The first
block corresponds to the algorithm EncSigGen, the second block to the algorithm EncSigCheck.
BV-NIZK stands for the NIZK argument to prove a commitment is the encryption of a bit vector
as depicted in Fig. 2. BE-NIZK stands for the NIZK argument to prove the equivalence between
a commitment to a bit vector and the discrete logarithm of D = gθ, as depicted in Fig. 3. #Exp,
#Mult, #BM, and #Div correspond respectively to the number of group exponentiations, group
multiplications, bilinear map applications and group inversions. #Hash is the number of hash
evaluations.

The number of rounds of our protocol is κ + 1, where κ is the security parameter. The
communication complexity is 16κ2 + 12κ bits. The protocol requires a linear number of
group exponentiations, group multiplications, bilinear map applications, hash computations
and also a constant number of group divisions (see Fig. 1 for more details).

2. We introduce a new non-interactive zero-knowledge (NIZK) argument to prove that a com-
mitment is the encryption of a bit vector. This protocol may be of independent interest.

3. We introduce another NIZK argument to prove that a commitment to a bit vector corresponds
to the binary decomposition of some value θ which is hidden as the discrete logarithm of some
group element. We think this argument may lead to other interesting applications.

4. As stated earlier, we propose a new security definition for partial fairness in the context of
the exchange of digital signatures. This definition is simple and avoids the issue of involving
the exact running time of the participants.

Our Approach. Let κ ∈ N be the security parameter. Let (p,G,GT , e, g)← BMGen(1κ) be the
public parameter where p = |G| = |GT | is prime, G,GT are cyclic groups, e : G × G → GT is
the bilinear map and g is a random generator. Let s be a random element in Zp, we consider the

following common reference string: (g, gs, gs
2

, ..., gs
κ

) = (g0, g1, g2, ..., gκ). In practice this common
reference string can be computed using generic multi-party computation techniques (see [9] for an

3



efficient implementation) so that the secret s is randomly generated and remains unknown to all
the participants. Another alternative is to rely on a TTP that would “securely delete” the secret
after the generation of the common reference string. Obviously the intention of this work is to
avoid the use of a TTP, but note however that even in this case, the TTP would be required only
once.

Our construction can be summarized as follows. The prover chooses a secret θ ∈ Zp, then
commits each bit of this secret into a Pedersen [28] commitment, where the bit bi in position i with
randomness ri ∈ Zp will be committed with respect to the base (g, gi): That is Commit(bi, ri, i) =

grigbii . Then we use a NIZK argument 3 to prove this commitment really encrypts a bit. The next
step is to publish D = gθ and show, using another NIZK argument, that θ, the discrete logarithm
of D, is “equivalent” to the bit vector committed in ~C = (Commit(bi, ri, i))i∈[κ]. More precisely,
the argument proves that θ =

∑

i∈[κ] bi2
i−1. Now if we consider some signature σ, the prover

will blind it using θ to obtain σ̃ = σθ. Using bilinear maps it is straightforward to verify that σ̃
contains a valid signature σ which is blinded in the exponent by θ, the discrete logarithm of D.
The other verifications will consist simply in checking the NIZK arguments. Finally, we need to
provide zero-knowledge proofs of knowledge for the representation of each bit commitment in order
to be able to simulate the execution of the protocol even if the adversary aborts. By releasing each
bit in turn, both players will reconstruct their own blinding factor θ and obtain the signature.

Related Work. Among the abundant literature on the topic of gradual release and fair exchange
for digital signatures, [12] is probably the work that is the most similar to ours: It describes a
practical fair exchange protocol for digital signatures based on gradual release of a secret. The
protocol described in [12] works for Rabin, RSA and El Gamal signatures. The number of rounds
of the protocol described in [12] is roughly 2κ for RSA and Rabin signatures and κ for El Gamal
signatures.

Due to Cleve’s impossibility result [10], the question of building complete fair protocols with
dishonest majority seemed to be closed. However, Gordon et al. showed that non-trivial func-
tions can be computed fairly in the two-party model [18], and left the question of finding a tight
characterization of these functions open. In particular it is not known whether functions with a
non-polynomial size domain and that return multiple bits as output (like computing a signature)
can be computed fairly in Cleve’s setting.

In [19] is proposed a definition for partial fairness that may exhibit some similarities with
ours (both definitions involve a Q(κ) factor where Q is a polynomial). However our definition
and approach differs quite from [19]. First, the setting in [19] is more general than our specific
construction to exchange digital signatures. Secondly, in their protocol, the number of rounds is
variable and defines the level of fairness, whereas in our construction fairness only depends on the
computational power of the participants.

Our NIZK argument to prove that a commitment encrypts a bit vector is inspired by [21, 20].
We remark that, though [16] uses the idea of gradual release, the construction proposed is not
practical as it requires to code the functionality (signing in our case) as an arithmetic circuit.

Organization of the Paper. In Section 2 we introduce notations and recall some definitions
and standard techniques we use in this work. In Section 3 we describe the bit vector commitment
scheme. The argument for proving the equivalence between a bit vector commitment (Ci)i∈[κ] and

the discrete logarithm θ of gθ is introduced in Section 4. The fair exchange protocol is shown in

3We recall in Section 2.2 standard definitions for zero-knowledge protocols.
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Section 5. We conclude in Section 6.

2 Preliminaries

2.1 Notations

For m,n ∈ N with m < n, [m..n] means the set of integers {m,m+ 1, ..., n− 1, n} and [n] means
the set of integers {1, ..., n}. If κ ∈ N is the security parameter then 1κ denotes the unary string
with κ ones. We will use p to denote a prime number of κ bits. A function ν : N → [0, 1] is said
to be negligible in κ if for every polynomial q(·) there exists κ0 such that ∀κ > κ0 : ν(κ) < 1/q(κ).
In the following, neg will denote some negligible function in κ. An algorithm is called PPT if it is

probabilistic and runs in polynomial time in κ. We write x
R← X to denote an element x chosen

uniformly at random from a set X . x← v means that the variable x is assigned the value v.
A vector of n components and values vi is denoted ~v = (vi)i∈[n]. If the vector contains elements

of Zp we may also write B[·] = (B[1], B[2], ..., B[n]). Let θ ∈ Zp, we denote by θ[·] the binary
decomposition (vector) of θ. That is θ[·] = (θ[1], ..., θ[κ]) and in particular θ =

∑

i∈[κ] θ[i]2
i−1. P (·)

will stand for a formal polynomial with coefficients in Zp, and P [·] for the vector of its coefficients:
Thus if d = deg(P ) is the degree of polynomial P (·) then we have: P (X) =

∑

i∈[d+1] P [i]X i−1.

2.2 Zero-Knowledge Protocols

2.2.1 Trapdoor commitments

Let R be the space of randomness, C the set where commitments belong and M the space for
messages. A trapdoor commitment scheme is composed by the following algorithms: K, Commit,
Verify, TCommit, TOpen. K(1κ) is a randomized algorithm that generates the common reference
string CRS and an associated trapdoor τ . Commit(CRS,m, r) is a deterministic algorithm that
computes a commitment C to value m ∈ M using r ∈ R. Verify(CRS, C,m, r) returns 1 if and
only if C = Commit(CRS,m, r), otherwise returns 0. We will sometime use the notation open to
denote the opening of the commitment C, that is open = (m, r). TCommit(τ) is a randomized
algorithm that returns an equivocal commitment C along with an equivocation key ek given the
trapdoor τ . TOpen(ek, C,m) is a deterministic algorithm that returns the randomness r ∈ R of C
with respect to message m ∈ M. In order to simplify the notation, in the following the common
reference string CRS will be an implicit argument of algorithms Commit and Verify.

We say the commitment scheme is computationally binding if for all non-uniform stateful PPT
adversary A we have

Pr

[

(CRS, τ)← K(1κ); (m0,m1, r0, r1)← A(CRS) :
m0 6= m1 ∧ Commit(m0, r0) = Commit(m1, r1)

]

= neg(κ)

The scheme is said to be perfectly hiding if for all non-uniform stateful adversaries A we have

Pr [ (CRS, τ)← K(1κ); (m0,m1)← A(CRS);C ← Commit(m0, r0) : A(C) = 1 ]
= Pr [ (CRS, τ)← K(1κ); (m0,m1)← A(CRS);C ← Commit(m1, r1) : A(C) = 1 ]
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A commitment scheme is perfectly trapdoor for any stateful PPT adversary we have:

Pr













(CRS, τ)← K(1κ);
m← A(CRS);

r
R←R;

C ← Commit(m, r) :
A(m, r) = 1













= Pr













(CRS, τ)← K(1κ);
m← A(CRS);

(C, ek)← TCommit(τ);
r ← TOpen(ek, C,m) :

A(m, r) = 1













As a commitment is perfectly indistinguishable from an equivocal commitment we have that a
perfect trapdoor commitment scheme is also perfectly hiding.

Our construction relies on a slight variation of the Pedersen4 commitment scheme [28] which
we recall here. Let G be a cyclic group of prime order p ∈ N. We consider the common reference
string composed by g ∈ G and h ∈ G where g, h are chosen randomly and the discrete logarithm
s of h in base g remains secret. To commit to a message m ∈ Zp with randomness r ∈ Zp we
compute5 Commit(m, r) = grhm. We denote by open = (m, r) the opening of the commitment. As
shown in [28], this scheme is perfectly hiding (in fact it is a trapdoor commitment where τ = s)
and computationally binding, under the assumption that computing the discrete logarithm in G
is hard.

2.2.2 Non-Interactive Zero-Knowledge Arguments

We are interested in statements that are efficiently verifiable6. Let R be a NP relation such that
(C,w) ∈ R means the statement is true and this can be verified with the witness w. We will
consider RN , the subset of R where the statements are of size N = κO(1). For relation R we
define a non-interactive argument in the following way. An algorithm KeyGen(1κ, N) generates
the common reference string CRS. Then the prover P given as input (CRS, C, w), checks first that
(C,w) ∈ RN . If this is not the case he outputs ⊥. Otherwise he outputs an argument π. The
verifier V using CRS, C and π returns 1 in case it accepts the argument and 0 otherwise.

In our case, C will be a commitment and w its opening (the message and the randomness). We
will consider non-interactive zero-knowledge (NIZK) argument (proof) systems (KeyGen,P ,V) for
the relation RN with the following properties.

Perfect Completeness. The argument is perfectly complete if a honest prover can convince a
honest verifier with probability 1 in case the statement is true. For any PPT adversary A we have

Pr

[

CRS← KeyGen(1κ, N); (C,w)← A(CRS);π ← P(CRS, C, w) :
V(CRS, C, π) = 1 ∧ (C,w) ∈ RN

]

= 1

Computational Soundness. The argument is said to be sound if no adversary can convince a
verifier of a false statement. For any PPT adversary A we have

Pr

[

CRS← KeyGen(1κ, N); (C, π)← A(CRS) :
V(CRS, C, π) = 1 ∧ ∄w : (C,w) ∈ RN

]

= neg(κ)

4Note that this kind commitment was introduced earlier in [8](see page 98).
5Note that we change a bit the convention as the message is “stored” as the exponent of h, instead of g.
6We follow the notations of [20].
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Perfect Witness Indistinguishability. The argument is said to be perfectly witness-indistinguishable
if the verifier does not learn which witness was used by the prover in order to produce the proof.
For all stateful interactive PPT adversaries A we have

Pr





CRS← KeyGen(1κ, N); (C,w1, w2)← A(CRS);
π ← P(CRS, C, w1) :

((C,w1), (C,w2)) ∈ R2
N ∧ A(π) = 1





= Pr





CRS← KeyGen(1κ, N); (C,w1, w2)← A(CRS);
π ← P(CRS, C, w2) :

((C,w1), (C,w2)) ∈ R2
N ∧ A(π) = 1





Note that in case there is only one valid witness w for some statement C, then the argument
becomes trivially perfectly witness-indistinguishable.

Perfect Zero-Knowledge. We say an argument is zero-knowledge if the verifier learns nothing
but the truth of the statement. To formalize this idea we consider two simulators S1, S2 such that
S1 generates the CRS and a trapdoor τ . The simulator S2 uses the common reference string CRS,
the statement C and the trapdoor τ to output a simulated argument π. The argument is said to
be perfect zero-knowledge if for any stateful interactive PPT adversary A we have

Pr









CRS← KeyGen(1κ, N);
(C,w)← A(CRS);
π ← P(CRS, C, w) :

(C,w) ∈ RN ∧ A(π) = 1









= Pr









(CRS, τ)← S1(1
κ, N);

(C,w)← A(CRS);
π ← S2(CRS, C, τ) :

(C,w) ∈ RN ∧ A(π) = 1









2.2.3 Non-interactive Zero-Knowledge Proofs of Knowledge

Our protocol for fair exchange uses zero-knowledge proofs of knowledge relative to bit commit-
ments. In order to simplify the description of the fair exchange protocol we will use non-interactive
zero-knowledge proofs of knowledge. We note however that interactive ZKPoK would work as well,
though adding 2 rounds to our protocol and loosing possibly security guarantees in case the pro-
tocol is run in parallel or involves more than 2 players. The most popular way to implement
such protocols is by using the Fiat-Shamir heuristic [15], trading non-interaction for a security
proof relying on the random oracle model. We mention that our scheme could also be adapted
to fit Groth’s short non-interactive argument proof system [20]. In this case the security of non-
interactive proofs of knowledge would depend on a non-black box assumption and we would get
shorter arguments7.

Let G be a cyclic group of prime order p where the discrete logarithm is hard. Let H : G→ Zp

be a randomly chosen function from a CRHF. Let g, h be two random generators of G such that
the discrete logarithm of h in base g is unknown.

We will need a ZKPoK of the discrete logarithm θ of some public value D = gθ. Following the

notation of [7], we have that PK{θ : gθ} = (c = H(gr), z = r − cθ) where r
R← Zp. The verifier

checks that c = H(Dcgz). We will also use the following ZKPoK that convinces a verifier that
the prover knows the representation of a commitment C = gαhβ in base (g, h) where α, β ∈ Zp.

PK{(α, β) : C = gαhβ} = (c = H(gr1hr2), z1 = r1 − cα, z2 = r2 − cβ) where r1, r2
R← Zp. The

verifier checks that c = H(Ccgz1hz2).

7Note however that the common reference string would need to be of quadratic size in the size of the statements.
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2.3 Bilinear Maps

In this paper we consider bilinear maps which are defined as following:
Let G,GT , be cyclic groups of prime order p. We consider a map

e : G×G→ GT which is

• bilinear : ∀a, b ∈ G, x, y ∈ Zp : e(ax, by) = e(a, b)xy.

• non-degenerate: let g be a generator of G then e(g, g) also generates GT .

• efficiently computable: There exists a polynomial time algorithm BMGen with parameter 1κ

that outputs (p, Ĝ, ĜT , ê, g) where Ĝ, ĜT is the representation of the corresponding groups of
size p (p being a prime number of κ bits), g is a generator of G, and ê is an efficient algorithm
to compute the map. For the sake of simplicity, we will not distinguish between G,GT , e,
and Ĝ, ĜT , ê.

2.4 Assumptions

Let N ∈ N. For the following assumptions, the common public parameter is
PP =< (p,G,GT , e, g), (g0, g1, g2, · · · , gN) > where s is chosen randomly in Zp and gi = gs

i

for
i ∈ [0..N ].

Definition 1 N-Diffie-Hellman Inversion (N-DHI) assumption, [26]. The N -Diffie-Hellman

Inversion problem consists in computing g
1
s given PP. We say the N -DHI assumption holds if for

any PPT adversary A we have

AdvN-DHI(A, κ,N) = Pr
[

g
1
s ← A(1κ, PP)

]

= neg(κ)

The bilinear variant of the previous assumption was introduced in [3].

Definition 2 N-Bilinear Diffie-Hellman Inversion assumption
(N-BDHI). The N - Bilinear Diffie-Hellman Inversion problem consists in computing e(g, g)

1
s

given PP. We say the N -BDHI assumption holds if for any PPT adversary A we have

AdvN-BDHI(A, κ,N) = Pr
[

e(g, g)
1
s ← A(1κ, PP)

]

= neg(κ)

Definition 3 N-Strong Diffie-Hellman assumption (N-SDH), [4]. The N -Strong Diffie-

Hellman (N -SDH) problem consists in computing (c, g
1

s+c ) given PP. We say the N -SDH assump-
tion holds if for any PPT adversary A we have

AdvN-SDH(A, κ,N) = Pr
[

(c, g
1

s+c )← A(1κ, PP)
]

= neg(κ)

As mentioned in [4], the N -SDH assumption is equivalent to the N -DHI assumption when c is
fixed. The following assumption can be considered as a particular case of the poly-Diffie-Hellman
assumption [23], or a generalization of the N+1-Exponent assumption introduced in [30].
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Definition 4 N+i-Diffie-Hellman Exponent(N+i-DHE) assumption. The N+i-Diffie-

Hellman Exponent problem consists in computing gs
N+i

, for
1 ≤ i ≤ N given PP. We say the N+i-DHE assumption holds if for any PPT adversary A we have

AdvN+i-DHE(A, κ,N) = Pr
[

gs
N+i ← A(1κ, PP)

]

= neg(κ)

In [30], the N -DHI assumption was shown to be equivalent to the N+1-Exponent assumption
(N+1-DHE). We state here the following implication.

Proposition 1 N -BDHI ⇒ N+i-DHE.

Proof. Let A be a PPT adversary that breaks the N + i-DHE assumption. We build the

following adversary B. B receives the challenge tuple g, gs, gs
2

, ..., gs
N

. He sets h = gs
N

. Then

if we consider t = 1
s we have that: (h, ht, ht2 , · · · , htN ) = (gs

N

, gs
N−1

, gs
N−2

, · · · , g). B sends

the tuple (h, ht, ht2 , · · · , htN ) to A who outputs h′ = htN+i

where 1 ≤ i ≤ N . We have that

h′ = htN+i

= gs
N−N−i

= g
1

si . Finally B outputs e(h′, gs
i−1

) = e(g, g)s
−i+i−1

= e(g, g)
1
s

2.5 Digital Signatures

Standard Digital Signatures. We denote by SSig = (SKG, SSig, SVf) a standard signature
scheme. A pair of private / public keys (sk, pk) is created by running SKG(1κ). Given a message
m ∈ {0, 1}∗, a signature on m under pk is σm = SSig(sk,m). A signature σ on m is deemed
valid if and only if SVf(pk,m, σ) returns valid. Regarding security, we use the standard notion of
existential unforgeability under chosen message attack [17].

Boneh and Boyen Signature Scheme [4]. We recall here briefly the short signature scheme [4]
introduced by Boneh and Boyen. The setup algorithm BMGen(1κ) generates the public parameters
of the scheme (p,G,GT , e, g)

8. The key generation algorithm SKG(1κ) selects random integers

x, y
R← Zp and sets u = gx and v = gy. The secret key is sk = (g, x, y) and the public key is

pk = (g, u, v). Given a message m and sk, the signing algorithm SSig(sk,m) works as follows.

It selects rσ
R← Zp such that rσ − (x + m)/y 6= 0 mod p and return the (randomized) signature

σ = (g
1

x+m+yrσ , rσ) = (σ′, rσ). Finally, in order to verify a signature σ on message m relative to
the public key pk, the algorithm SVf(pk,m, σ) consists in checking that e(σ′, ugmvrσ ) = e(g, g).
The scheme is secure in the standard model under the N -SDH assumption.

2.6 Simultaneous Hardness of Bits for Discrete Logarithm

Our construction relies on the idea of releasing gradually the bits of θ ∈ Zp, the discrete logarithm
in base g of D = gθ. A problem that could arise in this situation would be that some θ values are
somehow easier to find than others, especially when some of the bits are released. This might help
an adversary to retrieve θ much faster (by a factor greater than a polynomial) and thus break the
security of our protocol. To overcome this issue we need to introduce the Simultaneous hardness
of bits of the discrete logarithm assumption which states that a polynomial time adversary cannot
distinguish9 between a random sequence of l = κ−ω(log κ) bits and the first l bits of θ when given

8We use symmetric bilinear map for the sake of exposition.
9Note that a PPT adversary can easily distinguish both bit strings if l = κ − O(log κ) by performing a brute

force attack on the remaining bits as 2O(log κ) is a polynomial in κ.
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D = gθ.

Definition 5 (Simultaneous hardness of bits for discrete logarithm) Let G be a cyclic group of
prime order p. We say that the Simultaneous hardness of bits for discrete logarithm (SHDL)
assumption holds, if for every PPT adversary A and for any l = ω(log κ), we have that the
following quantity is negligible in κ:

AdvSHDL(A, κ) = |Pr
[

θ
R← Zp :

1← A(gθ, θ[1..κ− l])

]

− Pr

[

θ, α
R← Zp :

1← A(gθ, α[1..κ− l])

]

|

where the probability is taken over the random choices of A.

Schnorr [29] showed that the SHDL holds in the generic group model by computing the fol-
lowing upper bound on the advantage of the adversary:

AdvSHDL(A, κ) = O(κ(κ − l)
√
t(
2κ−l

2κ
)1/4)

where t is the number of generic group operations of the adversary. Thus, if we set l = ω(log κ),
we obtain that AdvSHDL(A, κ) = O(κ(κ− ω(log κ))

√
t(2−ω(log κ))1/4), which is negligible.

The recent work [13] by Duc and Jetchev suggests that results applying to groups of integers
modulo a safe prime [27, 24] can be extended to elliptic curves so to reduce the SHDL assumption
to more standard ones.

3 A New Argument to Prove a Commitment Encrypts

a Bit

In this section we describe a commitment scheme to encrypt a vector of values in Zp and then
provide a NIZK proof that each component of this vector is a bit. Our technique borrows from
[21] in the sense we use the idea that if the value b encrypted is a bit then b(b− 1) must be equal
to 0, and also from [20] by implementing a basic form of the restriction argument.

Our commitment scheme requires to generate a common reference string CRS = (g, gs, gs
2

, ..., gs
N

)

= (g0, g1, ..., gN) where s
R← Zp is the trapdoor. To commit a bit bi in position i using randomness

ri ∈ Zp, we compute the following slight variation of the Pedersen commitment Commit(bi, ri, i) =

Ci = grigbii . The commitment to the vector ~B = (b1, b2, ..., bN ) using the randomness ~r = (ri)i∈[N ]

will simply be the vector formed by the commitments for each bit in position i: ~C = (Ci)i∈[N ].

Abusing a bit our notation, we will write ~C = Commit( ~B,~r).
We still need a NIZK that each commitment Ci is the encryption of a bit. The prover proceeds

as follows: He computes the “translation” of the commitment by N − i positions to the right, by
providing the value Ai = griN−ig

bi
N . If we compute e(Ai, Cig

−1) and try to express this quantity as

e(Bi, g), we realize by simple inspection (see correctness proof of Theorem 2) that a factor g
bi(bi−1)
N+i

will appear. Obviously the prover does not know gN+i so in case bi /∈ {0, 1} he will not be able
to provide the second part of the proof, Bi. If bi is indeed a bit then the prover will compute the
proof πi = (Ai, Bi) in order to convince the verifier that Ci is the encryption of a bit relative to
position i.
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Common reference string: Input (1κ, N)
1. (p,G,GT , e, g) ← BMGen(1κ)

2. s
R
← Zp

3. Return CRS =< (p,G,GT , g), (g0, g1, g2, ..., gN ) > where for all i ∈ [0..N ] : gi = gsi .

Statement: The statement is formed by a vector of elements of G: (C1, C2, ..., CN ). The claim is that for

each i ∈ [N ] there exists ri, bi such that Ci = grig
bi
i where bi ∈ {0, 1}.

Proof: Input (CRS, ~B,~r)

1. Check that ~B = (b1, ..., bN ) ∈ {0, 1}N . Return ⊥ if this is not the case.

2. Check that ~r = (r1, ..., rN ) ∈ Z
N
p . Return ⊥ if this is not the case.

3. For each i ∈ [N ] compute an argument πi that Ci is the commitment to a bit in base gi: πi = (Ai, Bi)

where Ai = CsN−i

i and Bi is such that e(Ai, Cig
−1
i ) = e(Bi, g).

4. Return π = (πi)i∈[N ].

Verification: Input (CRS, ~C, π)

1. Parse ~C as (Ci)i∈[N ]. Check that ~C ∈ G
N .

2. Parse π as ((Ai, Bi))i∈[N ]. Check that π ∈ (G × G)N .

3. For each i ∈ [N ] check that:

(a) e(Ci, gN−i) = e(Ai, g).

(b) e(Ai, Cig
−1
i ) = e(Bi, g).

4. Return valid if and only if all check pass, otherwise return ⊥.

Figure 2: NIZK proof of a commitment being the encryption of a binary vector.

Proposition 2 The vector commitment scheme described above is perfectly hiding and computa-
tionally binding under the N -BDHI assumption.

Proof. Here we have that τ = s. If we define TCommit(τ) = (C = grgmi , ek = (m, r)) for
m, r ∈ Zp, we have that TOpen(C, ek,m′) will return r′ = r + si(m − m′). So the scheme is
perfectly trapdoor.

Assume an adversary A computes ~B, ~B′ ∈ ZN
p two vectors of messages and ~r = (r1, ..., rN ), ~r′ =

(r′1, ..., r
′
N ) ∈ ZN

p two randomness vectors such that Commit( ~B,~r) = Commit( ~B′, ~r′) and B[j] 6=
B′[j] for (at least) one j ∈ [N ]: We obtain the equation grj−r

′

jg(B[j]−B′[j])sj = 1G. If we set X = sj ,

we can deduce that (rj − r′j) + (B[j]−B′[j])X = 0 and then X = sj =
r′j−rj

B[j]−B′[j] mod p. Once sj

is recovered we can compute gXN = gN+j and by proposition 1, the N -BDHI assumption is broken.

The proof of the following theorem can be found in Section A.

Theorem 1 The protocol of Fig. 2 is a NIZK proof that the statement ~C = (Ci)i∈[N ] is such that

for every i ∈ [N ] there exists (ri, bi) ∈ (Zp × {0, 1}) with Ci = grigbii . The NIZK proof has perfect
completeness, perfect zero-knowledge and computational soundness under the N -BDHI assumption.
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4 Base Equivalence Argument

Let θ
R← Zp. Consider the commitment to the bit vector ~C = (Ci)i∈[κ] = (grig

θ[i]
i )i∈[κ] where

ri ∈ Zp for each i ∈ [κ] and also D = gθ. In this section we introduce a NIZK proof to show that
indeed each bit commitment in position i, Ci, encrypts the ith bit of θ, which is hidden as the
discrete logarithm of D. This argument will allow us to blind the signature with some random
factor θ (in the exponent) and then reveal each bit of this exponent gradually without leaking

any additional information. The idea is the following. Given θ ∈ Zp and ~C = (grig
θ[i]
i )i∈[κ], the

prover proceeds in two steps. First he computes D′ =
∏

i∈[κ] g
rig

θ[i]
i

gr where r =
∑

i∈[κ] ri. Here
the prover computes some compressed representation of the bit vector commitment and removes
the randomness. Observe however that as θ is uniformly random, thus so is D′. The prover
will need to convince the verifier that r is indeed the accumulated randomness of the bit vector
commitment. To do so he computes U = D′

1
s = (

∏

i∈[κ] g
θ[i]
i )

1
s =

∏

i∈[κ] g
θ[i]
i−1 where we recall

that g0 = g. Observe that this value can be computed without knowing s. In order to verify this

proof, the verifier will check that e(
∏

i∈[κ] Ci

gr , g) = e(U, g1). Intuitively, once the randomness of
the bit vector is removed one can move the vector to the left by one position. If r would not be
equal to

∑

i∈[κ] ri, this would not be possible without breaking some assumption. The second step

consists in checking that the condensed bit vector commitment U =
∏

i∈[κ] g
θ[i]
i−1 is “equivalent” to

the simple commitment gθ. This is done by noting that U =
∏

i∈[κ] g
θ[i]
i−1 = gP (s) where P (·) is the

polynomial P (X) =
∑

i∈[κ] θ[i]X
i−1. This means in particular that P (2) =

∑

i∈[κ] θ[i]2
i−1 = θ.

Thus, we need to prove that P (s)−P (2) = P (s)− θ is divisible by s− 2. The prover can compute
the coefficients of the formal polynomial W (·) such that P (X)−P (2) = W (X)(X − 2), then using
the common reference string CRS the prover obtains V = gW (s). Verifying the “base equivalence”
statement consists in checking that e(UD , g) = e(V, g1g

−2) = e(V, gs−2). This means that indeed
θ = P (2) and thus the coefficients of P (·) correspond to the binary decomposition of θ. The full
protocol is detailed in Fig. 3.

Theorem 2 The protocol in Fig. 3 is a NIZK proof that the bits of the discrete logarithm of D
correspond to the bit vector committed in (Ci)i∈[κ]. The NIZK proof has perfect completeness,
perfect zero-knowledge and computational soundness under the κ-SDH assumption.

The proof can be found in Section B.

5 Fair Exchange of Short Signatures without TTP

Our fair exchange protocol for digital signatures works as follows. At the beginning a common
reference string CRS is generated. Then each participant runs FEKeyGen(1κ) to obtain a pair of
(public/private) keys (pk, sk) for the signing algorithm. At this point each participant executing
EncSigGen(CRS, sk,m) will compute an encrypted signature γ for the message m, using the sig-
nature σm blinded with some factor θ. This value γ will also contain the proofs that relate the
signature σm with some bit vector commitment to θ.

The rest is straightforward: Each participant sends the encrypted signature. If all the verifica-
tions pass, the first participant PA will ask to PB to open the commitment of the first bit of θA.
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Common reference string: Input (1κ, κ)
1. (p,G,GT , e, g) ← BMGen(1κ).

2. s
R
← Zp.

3. Return CRS =< (p,G,GT , e), (g0, g1, g2, ..., gκ) > where for all i ∈ [0..κ] : gi = gsi .

Statement: The statement is formed by a vector of elements of G: (D,C1, C2, ..., Cκ) where (Ci)i∈[κ] is
a commitment to a bit vector as defined in Sect. 3. The claim is that the vector formed by the binary
decomposition of the discrete logarithm of D is equal to the bit vector committed in (Ci)i∈[κ].

Proof: Input (CRS, θ, r1, ..., rκ)

1. Check that D = gθ . Return ⊥ if this is not the case.

2. Compute for every i ∈ [κ]: Ci = grig
θ[i]
i .

3. Compute r =
∑

i∈[κ] ri.

4. Compute U = (

∏
i∈[κ] Ci

gr
)
1
s using the common reference string CRS and the bit vector θ[·].

5. Compute the formal polynomial W (·) such that P (X) − P (2) = W (X)(X − 2) where P (X) =
∑

i∈[κ] θ[i]X
i−1, and P (2) =

∑
i∈[κ] θ[i]2

i−1 = θ. Compute V = gW (s) using the coefficients of

the formal polynomial W (·) and the common reference string CRS.

6. Return π = (r, U, V ).

Verification: Input (CRS, C, π)

1. Parse C as (D, (Ci)i∈[κ]).

2. Parse π as (r, U, V ).

3. Check that r ∈ Zp.

4. Check that (U, V,D,C1, ..., Cκ) ∈ G
κ+3.

5. Compute D′ =

∏
i∈[κ] Ci

gr
.

6. Check that e(D′, g) = e(U, g1).

7. Check that e( U
D
, g) = e(V, g1g

−2).

8. Accept if all tests pass in which case return valid otherwise return ⊥.

Figure 3: NIZK proof that a basic commitment is equivalent to a bit vector commitment.
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If the opening is successful, PB will do the same for its own blinding factor θB. The process is
repeated for each bit until all the bits of the blinding factors are recovered. Finally, each player
can compute the signature by “canceling out” the blinding factor θ. The abstract syntax of the
protocol is described in Fig. 4.

We describe now more in detail how the encrypted signature is constructed, which is the core
of our construction. The encrypted signature contains:

1. A commitment ~C to the bit string formed by the bits of θ as described in Section 3.

2. σ̃, the signature of the message m blinded by θ.

3. Proofs to guarantee that the bit vector commitment encrypts the binary decomposition of
the blinding factor θ.

4. A proof in order to convince the verifier that γ is the encryption of σm under some blinding
factor θ which is hidden in the basic commitment gθ.

5. A proof of knowledge of the discrete logarithm of D and a proof of knowledge of the repre-
sentation of each bit commitment of the vector ~C. These proofs of knowledge will allow us
to keep simulating the adversary despite it aborts.

A detailed description of the concrete protocol is given in Fig. 5.

PA(CRS, mA,mB) PB(CRS,mA,mB)

1 (skA, pkA)← FEKeyGen(1κ)
2 pkA −→
3 (skB , pkB)← FEKeyGen(1κ)
4 ←− pkB

5 (θA, ~rA, γA)← EncSigGen(CRS, skA,mA)
6 γA −→
7 (θB, ~rB , γB)← EncSigGen(CRS, skB ,mB)
8 ←− γB

10 v ← EncSigCheck(CRS, pkB ,mB , γB)
11 if v = 0 then ABORT

12 v ← EncSigCheck(CRS, pkA,mA, γA)
13 if v = 0 then ABORT

for i = 1 to κ:
14 openA,i ← KeyBitProofGen(CRS, ~rA, θA, i)
15 openA,i −→
16 openB,i ← KeyBitProofGen(CRS, ~rB , θB , i)
17 ←− openB,i

19 vi ← KeyBitCheck(CRS, openB,i, i)
20 if vi = 0 then ABORT

21 vi ← KeyBitCheck(CRS, openA,i, i)
22 if vi = 0 then ABORT

end for

23 σmB
← EncSigDecrypt(γB , θB)

24 σmA
← EncSigDecrypt(γA, θA)

Figure 4: Abstract fair exchange protocol.

We say that the protocol is perfectly complete10 if, and only if, both players PA and PB that

10Here complete does not refer to fairness.
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follow the protocol obtain respectively σA = SSig(skB ,mB), the signature of message mB and
σB = SSig(skA,mA), the signature of message mA, with probability 1.

We say that the protocol is (partially) fair if, at the end of the execution of the protocol (be it
normal or anticipated by the abortion of the adversary), the probability of both players to recover
their corresponding signature differs at most by a polynomial factor in the security parameter
κ. As mentioned in the introduction, the advantage of this approach is that it avoids trying to
compare the exact running time of the participants and thus allows to capture in a simple, but
precise manner, the intuition of partial fairness.

Definition 6 (Partial fairness) We define the partial fairness of the protocol through the following
experiment: The adversary A plays the role of the corrupted player say w.l.o.g. PA. Thus, PB

is honest and follows the protocol. OSSig(·) is the signing oracle for the signature scheme SSig

relative to the public key pkB of PB.

1. A asks for signature computations for arbitrary messages to OSSig(·).

2. A chooses the messages mA and mB on which the fair exchange protocol will be run, with
the restriction that mB must not have been requested before to OSSig(·).
A computes also its public key pkA and sends it to PB.

3. A then interacts in arbitrary way with PB.

4. If A has aborted before ending the protocol, then let θ∗A[1..i] (0 ≤ i ≤ κ) be the partial blinding
obtained by PB. At this point we assume that PB will try to compute SSig(skA,mA) by
choosing at random some element in the remaining space of size 2κ−i. We call this tentative
signature σB .

5. A keeps running its own algorithm and finally outputs a tentative signature σA on mB relative
to public key pkB .

The protocol is said to be partially fair if and only if there exists some polynomial Q(·) such that

Pr [ SVf(pkB ,mB, σA) = valid ]

Pr [ SVf(pkA,mA, σB) = valid ]
≤ Q(κ)

where the probability is taken over the random choices of A and PB.

Theorem 3 The protocol described in Fig. 5 is complete. Moreover if the κ-SDH assumption,
the κ-BDHI assumption and the SHDL assumption hold, and the underlying signature scheme is
secure, and a securely precomputed common reference string is available, then it is secure in the
random oracle model according to definition 6.

The proof can be found in Section C.
As the signature scheme presented in [4] is secure under the κ-SDH assumption, we have

Corollary 1 The protocol described in Fig. 5 is complete. Moreover if the κ-SDH assumption, the
κ-BDHI assumption and the SHDL assumption hold, and a securely precomputed common reference
string is available, then it is secure in the random oracle model according to definition 6.
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6 Conclusion and Future Work

In this work we introduced a practical protocol to exchange short signatures [4] fairly without
relying on a TTP. It seems our approach can be applicable to other signature schemes or more
generally to the exchange of values which are computed from a secret and are publicly verifiable
using bilinear maps. Thus, our techniques might be extended in order to obtain a general framework
to build practical fair protocols involving bilinear maps.

Acknowledgments. The author is very grateful to Anna Lysyanskaya for pointing out a gap in
the proof of Theorem 3.
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A Proof of Theorem 1

Proof. Perfect Completeness. Let i ∈ [N ]. It’s clear that the prover can compute Ai = CsN−i

i .

Then if bi := ~B[i] ∈ {0, 1} we have bi(bi − 1) = 0 and

e(Ai, Cig
−1
i ) = e(g(ri+bis

i)sN−i

, grig(bi−1)s
i

)

= e(g(ris
N−i+bis

N )(ri+(bi−1)s
i), g)

= e(gr
2
i s

N−i+ribis
N+ri(bi−1)s

N+bi(bi−1)s
N+i

, g)

= e(gr
2
i s

N−i+sNri(2bi−1), g)
= e(Bi, g)

We can see that the prover can compute Bi as he knows ri and bi and the group elements gN−i, gN
are public.

Computational Soundness. Assume there exists some adversary A that breaks the sound-
ness of the scheme (that is A is able to open the commitment to some vector that does not contain
bits) for at least one i. We build the following adversary B that breaks the N -BDHI assump-
tion. B receives the challenge tuple (g0, g1, g2, ..., gN ). B runs A using the tuple as the CRS and
obtains Ci, ri, bi such that Ci = grigbii and πi = (Ai, Bi) where e(Ci, gN−i) = e(Ai, g) (1) and
e(Ai, Cig

−1
i ) = e(Bi, g) (2).

From (1) we can deduce that Ai = CsN−i

i . From (2) (as seen in the correctness proof) we have

that Bi = gr
2
i s

N−i+ri(2bi−1)s
N+bi(bi−1)s

N+i

= g
r2i
N−ig

ri(2bi−1)
N g

bi(bi−1)
N+i

B can computeX = g
r2i
N−ig

ri(2bi−1)
N , so it can obtain gN+i = (Bi·X−1)

1
bi(bi−1) where bi(bi−1) 6= 0

as bi /∈ {0, 1}, and thus the N + i-DHE assumption is broken. Using proposition 1 we have that
the N -BDHI assumption is broken as well.
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Perfect zero-knowledge. We justify why the argument is perfectly witness-indistinguishable.

Consider a pair of witnesses (ri, bi), (r
′
i, b
′
i) for some commitment Ci = grigbii = gr

′

ig
b′i
i . First observe

that there is only one possible argument that satisfies equations Ai = A′i = CsN−i

i . Secondly we

have that Bi = gr
2
i s

N−i+ri(2bi−1)s
N

and B′i = gr
′2
i sN−i+r′i(2b

′

i−1)s
N

are uniformly random and thus
are perfectly indistinguishable.

We describe now the zero-knowledge simulator. It generates the common reference string
correctly, and also learns the trapdoor so it can create commitments that can be opened to any
value. As the commitment can be opened, it is straightforward to compute an argument Ai, Bi.

Let us justify why the simulator simulates perfectly the real argument. Consider the hybrid
stateful algorithm where the simulator generates the trapdoor and the common reference string but
opens the commitment to the real bit bi. Then as the randomness is known, the hybrid algorithm
can compute the argument as well. As the commitment is perfectly trapdoor, the real argument is
perfectly indistinguishable from the hybrid algorithm. Finally as the argument is perfect witness-
indistinguishable the hybrid is perfectly indistinguishable from the simulated argument.

B Proof of Theorem 2

Proof. Perfect Completeness. The reason why the prover can compute U = (
∏

i∈[κ] Ci

gr )
1
s

without knowing s is because U =
∏

i∈[κ] g
θ[i]
i−1. Indeed U corresponds to the vector (0, θ[1], ..., θ[κ])

that is moved by one position to the left. Similarly V can be computed because the prover knows

the coefficients W [i] of the polynomial W (·) of degree κ− 2, so we have V =
∏

i∈[κ−1] g
W [i]
i−1 . The

rest follows by inspection.
Computational Soundness. Let A be the PPT adversary that breaks the soundness of the

scheme. We build the following adversary B. B receives the challenge tuple (g0, g1, g2, · · · , gκ).
This challenge tuple stands for the CRS and is sent to A. A returns the following values:

• θ ∈ Zp.

• θ∗ ∈ Zp such that D = gθ
∗

and θ 6= θ∗.

• (ri, θ[i]) ∈ (Zp × {0, 1})κ for i ∈ [κ] such that ~C = (Ci)i∈[κ] where Ci = grig
θ[i]
i .

• π = (r, U, V ) ∈ Zp ×G×G.

Assume first that r 6= ∑

i∈[κ] ri mod p then we can deduce that U = (g
∑

i∈[κ] ri−rgθis
i

)1/s. As

g
θis

i

s = gθii−1 is easily computable due to the fact that θ[i] are known, B can deduce g

∑
i∈[κ] ri−r

s

and as δ =
∑

i∈[κ] ri − r 6= 0 mod p is known, B can compute g
1
s = ( U

g
θi
i−1

)
1
δ and thus the κ-DHI

assumption is broken. From now on we assume that
∑

i∈[κ] ri = r. As the adversary A wins, this

means that there exists some j ∈ [κ] such that θ[j] 6= θ∗[j]. Moreover as the verification involving V

passes we have that V = g

∑
i∈[κ] θ[i]s

i−1
−θ∗[i]2i−1

s−2 . As the decomposition in binary is unique we have

that ∆ =
∑

i∈[κ] 2
i−1(θ[i]−θ∗[i]) 6= 0 mod p. We can rewrite V as V = g

∆
s−2+

∑
i∈[κ] θ[i]s

i−1
−θ[i]2i−1

s−2 =

g
∆

s−2+

∑
i∈[κ] θ[i](si−1

−2i−1)

s−2 = g
∆

s−2+Z(s) where the coefficients of Z(·) are efficiently computable by
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B because ∀i ∈ [κ] : s − 2|si−1 − 2i−1. As ∆ ∈ Zp is also known this means B can compute

g
1

s−2 = ( V
gZ(s) )

1
∆ and thus the κ-SDH assumption is broken.

Perfect zero-knowledge. The simulator works as follows. It generates the common reference
string CRS correctly and saves the trapdoor s. Given the statements D and ~C = (Ci)i∈[κ] such

that ~C is formed by Pedersen commitments to bits in positions 1, ..., κ and such that D and ~C are
equivalent with respect to bases (2, s), the simulator chooses a random r′ ∈ Zp and reveals it as

the randomness of
∏

i∈[κ] Ci. Then, the simulator sets U = (
∏

i∈[κ] Ci

gr′
)

1
s and V = (UD )

1
s−2 . To see

that r′, U, V produced by the simulator are indistinguishable from values of a real experiment, we
observe that:

• r′ is uniformly distributed as well as r.

• D′ is equal to f1(r
′) in the simulated experiment and f1(r) in the real experiment, where

f1 : G→ G is defined as f1(x) =
∏

i∈[κ] Ci

x

• U is equal to f2(r
′) in the simulated experiment and f2(r) in the real experiment, where

f2 : G→ G is defined as f2(x) = f1(x)
1
s .

• V is equal to f3(r
′) in the simulated experiment and f3(r) in the real experiment, where

f3 : G→ G is defined as f3(x) = ( f2(x)D )
1

s−2 .

C Proof of Theorem 3 and detailed description of the pro-

tocol

Proof. As the underlying NIZK arguments are perfectly complete, we can see by inspection
that so is the fair exchange protocol. Let A be the adversary that breaks the fairness of our
protocol.

We distinguish between two types of adversaries A:
• Type I : the adversaryA does not lie: That is he does not forge values for the NIZK arguments
and/or the commitments. Said differently, adversary A follows the protocol, but may abort
prematurely.

• Type II : the adversary A lies.

Note that both adversaries may abort during the execution of the protocol. The simulator B
will choose with probability 1/2 to bet that A is of type I and with probability 1/2 that A is of
type II.

What happens in case of an adversary of type I, is that the only way for A to win his by
breaking the signature scheme (without even caring about the values sent by PB). This means
the simulator B will try to build an adversary that breaks the security of the signature scheme.
The case of adversary of type II is more straightforward: as A lies, the simulator will be able to
break the soundness of some of the arguments involved or the binding property of the commitment
scheme.
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FESetup(1κ)
1. (p,G,GT , e, g) ← BMGen(1κ)

2. s
R
← Zp

3. Return CRS =< (p,G,GT , e, g), (g0, g1, g2, ..., gκ) > where for all i ∈ [0..κ] : gi = gsi .

FEKeyGen(1κ)

1. (sk, pk) ← SKG(1κ) where sk = (g, x, y) and pk = (g, u, v) with u = gx and v = gy , like described in
section 2.5.

2. Return (sk, pk).

EncSigGen(CRS, sk,m)

1. Compute θ
R
← Zp.

2. Compute D = gθ .

3. Compute ~C = (Ci)i∈[κ] = (grig
θ[i]
i )i∈[κ].

4. Compute π1 that shows that ~C is the encryption of a binary vector as described in figure 2.

5. Compute π2 that shows that ~C is the encryption of the bits of the binary decomposition of the blinding
factor θ as described in figure 3.

6. Compute PKθ = PK{θ : gθ} as described in section ??.

7. Compute ~PK, a vector where each component at position i is ZKPoK for the representation of Ci in

base (g, gi). ~PK = (PK{(ri, θ[i]) : grig
θ[i]
i })i∈[κ] as described in section ??.

8. Parse sk as (g, x, y).

9. Set rσ
R
← Zp.

10. Compute σ = (σ′, rσ)← SSig(sk,m) where σ′ = g
1

x+m+yrσ .

11. Set σ̃ ← (σ′θ = g
θ

x+m+yrσ , rσ) = (σ̃′, rσ).

12. Set γ ← (D, ~C, π1, π2, PKθ, ~PK, σ̃).

13. Return (θ, ~r, γ), where ~r = (ri)i∈[κ] is the randomness vector of the commitment ~C.

EncSigCheck(CRS, pk,m, γ)

1. Parse γ as γ = (D, ~C, π1, π2, PKθ, ~PK, σ̃).

2. Check π1 as described in figure 2.

3. Check π2 as described in figure 3.

4. Check PKθ using D and PKθ as described in section ??.

5. Check the zero-knowledge proof of knowledge ~PK using ~C and ~PK as described in section ??.

6. Parse pk as pk = (g, u, v).

7. Check that e(σ̃, ugmvr
σ) = e(D, g).

8. Return valid if all tests pass, ⊥ otherwise.

KeyBitProofGen(CRS, ~r, θ, i)

1. Opens the ith commitment of ~C, that is (θ[i], ri) such that Ci = grig
θ[i]
i .

2. Return open← (θ[i], ri).

KeyBitCheck(CRS, open, i)

1. Parse open as open = (b, r)

2. Check that Ci = grgb
i and b ∈ {0, 1}.

EncSigDecrypt(γ, θ)

1. Parse γ as γ = (D, ~C, π, PKθ, ~PK, σ̃).

2. Parse σ̃ as σ̃ = (σ̃′, rσ).

3. Compute σ′ = σ̃′
1
θ .

4. Return σ = (σ′, rσ).

Figure 5: Implementation of the fair exchange protocol.
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For adversary A of type I, we will consider two scenarios: In the first case the simulator B
will try to fool the A by computing commitments without knowing the signature on message mB,
σmB

. Thus if A outputs the signature the simulator will have been able to break the signature
scheme. Note however that A could detect that he is simulated due to the fact that the simulator
B does not know the signature and thus has no access either to the discrete logarithm of D. This
means that at some point of the execution of the protocol A might abort the simulation and
make the reduction fail. To handle this case, the simulator B will change his strategy by using a
known signature but trying to distinguish between a sequence of κ−ω(log κ) random bits and the
κ− ω(log κ) heading bits of some discrete logarithm.

We now detail both strategies. B will bet on each strategy with probability 1/4.
Type I - first strategy: B generates himself the CRS, thus knowing the trapdoor s. When

A chooses the message mB to be signed, B will not compute the signature because he wants to
break the signature scheme. More concretely B will

1. Run BMGen(1κ) to obtain (p,G,GT , e, g).

2. Set s
R← Zp.

3. Compute CRS←< (p,G,GT , e, g), (g0, g1, ..., gκ) > where ∀i ∈ [0..κ] :

gi = gs
i

.

4. Set θB
R← Zp.

5. Set rσ
R← Zp.

6. Set D = (gmBuvrσ )θB .

7. Set σ̃ = (gθB , rσ).

8. Set (r1, r2, ..., rκ)
R← Zκ

p .

9. ~C = (Ci)i∈[κ] = (grig
θB[i]
i )i∈[κ].

Note that all the proofs can be computed because B knows s. Moreover A is fooled because we
have e(σ̃, gmBuvrσ) = e((gmBuvrσ )θB , g) = e(D, g) and all values computed by the simulator B are
perfectly indistinguishable from those of a real experiment.

Let σB be the signature that is output by B. As A does not lie, if he aborts the simulation
where only O(log κ) bits remain we have that
Pr [ SVf(pkA,mA, σB) = valid ] ≥ 1

2log(R(κ))+1 (+1 because A has got one bit of advantage). We

can deduce that Pr[ SVf(pkB ,mB,σA)=valid ]
Pr[ SVf(pkA,mA,σB)=valid ] ≤ 1

2−(log(R(κ)+1) = 2log(R(κ))+1 = 2R(κ) which is still a

polynomial, thus A did not win, so our reduction is still valid. The case where the adversary A
aborts the simulation when ω(log κ) bits remain is treated in the second strategy. Consider now
the case where A does not abort in the simulation. That is he may abort the protocol but will
finally output the signature σA, which is an attempt to be a valid signature for message mB. This
means that the simulator, by outputting σA computed by adversary A, managed to break the
signature scheme.

Type I - second strategy: B receives as input some element E which discrete logarithm
is unknown and some sequence α of κ − ω(log κ) bits. He also generates himself the CRS and
computes the private key for the signature scheme as well. When A chooses the message mB to be
signed, B will commit to the bit vector that starts by α and ends with random bits. As B knows
the trapdoor he will be able to compute proofs and make all the tests pass. To summarize B will

1. Run BMGen(1κ) to obtain (p,G,GT , e, g).
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2. Set s
R← Zp.

3. Compute CRS←< (p,G,GT , e, g), (g0, g1, ..., gκ) > where ∀i ∈ [0..κ] :

gi = gs
i

.

4. Generate random x, y ∈ Zp and set u = gx, v = gy as the public key for the signature scheme.

5. Set θB ← α||α′ where α′ is a random bit sequence with |α|+ |α′| = κ

6. Set rσ
R← Zp.

7. Set D = E.

8. Set σ̃ = (D
1

x+mB+yrσ , rσ).

9. Set (r1, r2, ..., rκ)
R← Zκ

p .

10. ~C = (Ci)i∈[κ] = (grig
θB[i]
i )i∈[κ].

These values are indistinguishable from a real execution of the protocol. If A aborts the simulation
(not only the protocol), that is he does not output his tentative signature σA then this means that α
was not the sequence of the heading bits of the discrete logarithm of E. Thus the SHDL assumption
is broken.

Type II: For adversary A of type II, the simulator B does the following: He asks A to compute
γA which is parsed as (DA, ~CA, πA,1, πA,2, PKθA, ~PKA, σ̃A). For the proofs of knowledge A will
use H(·) a random oracle which is controlled by B. So B will rewind A and obtain PKθ

′
A from

which he will obtain θ∗A and ~PK
′

A and will extract (rAi, θA[i]) for each i ∈ [κ]. As A lied, B
will be able to break the soundness of one of the NIZK argument or the binding property of the
commitment scheme.
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