Skip to main content

Efficient Public Key Cryptosystem Resilient to Key Leakage Chosen Ciphertext Attacks

  • Conference paper
Topics in Cryptology – CT-RSA 2013 (CT-RSA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7779))

Included in the following conference series:

  • 2590 Accesses

Abstract

Leakage-resilient public key encryption (PKE) schemes are designed to resist “memory attacks”, i.e., the adversary recovers the cryptographic key in the memory adaptively, but subject to constraint that the total amount of leaked information about the key is bounded by some parameter λ. Among all the IND-CCA2 leakage-resilient PKE proposals, the leakage-resilient version of the Cramer-Shoup cryptosystem (CS-PKE), referred to as the KL-CS-PKE scheme proposed by Naor and Segev in Crypto09, is the most practical one. But, the key leakage parameter λ and plaintext length m of KL-CS-PKE are subject to λ + m ≤ logq − ω(logκ), where κ is security parameter and q is the prime order of the group on which the scheme is based. Such a dependence between λ and m is undesirable. For example, when λ (resp., m) approaches to logq, m (resp., λ) approaches to 0.

In this paper, we designed a new variant of CS-PKE that is resilient to key leakage chosen ciphertext attacks. Our proposal is λ ≤ logq − ω(logκ) leakage-resilient, and the leakage parameter λ is independent of the plaintext space that has the constant size q (exactly the same as that in CS-PKE). The performance of our proposal is almost as efficient as the original CS-PKE. As far as we know, this is the first leakage-resilient CS-type cryptosystem whose plaintext length is independent of the key leakage parameter, and is also the most efficient IND-CCA2 PKE scheme resilient to up to logq − ω(logκ) leakage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous Hardcore Bits and Cryptography against Memory Attacks. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 474–495. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Biham, E., Shamir, A.: Differential Fault Analysis of Secret Key Cryptosystems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  3. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the Importance of Checking Cryptographic Protocols for Faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  4. Carter, J.L., Wegman, M.N.: Universal classes of hash functions. Journal of Computer and System Sciences 18, 143–154 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness and probabilistic communication complexity. SIAM Journal on Computing 17(2), 230–261 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cramer, R., Shoup, V.: Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Computing 33(1), 167–226 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Damgård, I., Jurik, M.: A Generalisation, a Simplification and Some Applications of Paillier’s Probabilistic Public-key System. In: Kim, K.-C. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001) (Full version with additional co-author J. B. Nielsen)

    Google Scholar 

  9. Dimitrov, V.S., Jullien, G.A., Miller, W.C.: Complexity and Fast Algorithms for Multiexponentiations. IEEE Transactions on Computers 49(2), 141–147 (2000)

    Article  MathSciNet  Google Scholar 

  10. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient Public-Key Cryptography in the Presence of Key Leakage. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 613–631. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. SIAM Journal on Computing 38(1), 97–139 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science, pp. 293–302 (2008)

    Google Scholar 

  13. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-Time Programs. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Gordon, D.M.: A Survey of Fast Exponentiation Methods. Journal of Algorithms 27(1), 129–146 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino, J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: Cold boot attacks on encryption keys. In: Proceedings of the 17th USENIX Security Symposium, pp. 45–60 (2008)

    Google Scholar 

  16. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)

    Google Scholar 

  17. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  18. Micali, S., Reyzin, L.: Physically observable cryptography. In: Proceedings of the 1st Theory of Cryptography Conference, pp. 278–296 (2004)

    Google Scholar 

  19. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography, pp. 617–619. CRC Press (1995)

    Google Scholar 

  20. Naor, M., Segev, G.: Public-Key Cryptosystems Resilient to Key Leakage. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  21. Pietrzak, K.: A Leakage-Resilient Mode of Operation. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  22. Petit, C., Standaert, F.-X., Pereira, O., Malkin, T., Yung, M.: A block cipher based pseudo random number generator secure against side-channel key recovery. In: Proceedings of the ACM Symposium on Information, Computer and Communications Security (ASIACCS), pp. 56–65 (2008)

    Google Scholar 

  23. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pp. 84–93 (2005)

    Google Scholar 

  24. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs. In: IACR Cryptology ePrint Archive, p. 332 (2004)

    Google Scholar 

  25. Shoup, V.: A Computational Introduction to Number Theory and Algebra. Cambridge University Press (2005)

    Google Scholar 

  26. Wegman, M.N., Carter, J.L.: New hash functions and their use in authentication and set equality. Journal of Computer and System Sciences 22, 265–279 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, S., Weng, J., Zhao, Y. (2013). Efficient Public Key Cryptosystem Resilient to Key Leakage Chosen Ciphertext Attacks. In: Dawson, E. (eds) Topics in Cryptology – CT-RSA 2013. CT-RSA 2013. Lecture Notes in Computer Science, vol 7779. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36095-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36095-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36094-7

  • Online ISBN: 978-3-642-36095-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics