Skip to main content

Privacy Preserving Payments on Computational RFID Devices with Application in Intelligent Transportation Systems

  • Conference paper
Book cover Radio Frequency Identification. Security and Privacy Issues (RFIDSec 2012)

Abstract

Electronic cash is a suitable solution for payment systems, in which the user’s identity should not be revealed during the payment. This is for example the case for public transportation payment systems. One electronic cash scheme, efficient during the spending phase, was proposed by Brands’. This scheme, as all privacy-preserving payment schemes, is based on public-key cryptography. However, payment devices used in those systems need to be cheap and low-power, which restricts their computational performance. These two points conflict with the need for payments to be executed quickly, in order to avoid delays at the entrance points of the system. In this work we demonstrate that using sophisticated implementation techniques, it is possible to realize full-size e-cash schemes even on inexpensive payment tokens. We present a full implementation of Brands’ offline cash scheme for the UMass Moo, a computational RFID-token. The spending protocol, which is the time critical part in transportation payment systems can be executed in 13 ms. This meets real-world application requirements. The reloading of the card, which is less time critical, as it is conducted offline, is time consuming. We discuss solutions to this problem.

This work is supported by the NSF under CNS-0964641. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Batina, L., Hoepman, J.-H., Jacobs, B., Mostowski, W., Vullers, P.: Developing Efficient Blinded Attribute Certificates on Smart Cards via Pairings. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.) CARDIS 2010. LNCS, vol. 6035, pp. 209–222. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Bichsel, P., Camenisch, J., Groß, T., Shoup, V.: Anonymous credentials on a standard java card. In: ACM Conference on Computer and Communications Security, pp. 600–610 (2009)

    Google Scholar 

  3. Bos, J.W., Kaihara, M.E., Kleinjung, T., Lenstra, A.K., Montgomery, P.L.: On the Security of 1024-bit RSA and 160-bit Elliptic Curve Cryptography. IACR Cryptology ePrint Archive, 2009:389 (2009)

    Google Scholar 

  4. Brands, S.: Untraceable Off-line Cash in Wallets with Observers (Extended Abstract). In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 302–318. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  5. Clemente-Cuervo, E., Rodríguez-Henríquez, F., Arroyo, D.O., Ertaul, L.: A PDA Implementation of an Off-line e-Cash Protocol. In: Security and Management, pp. 452–458 (2007)

    Google Scholar 

  6. Cohen, B.: AES-hash (2001), http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/aes-hash/aeshash.pdf

  7. Coron, J.-S.: Resistance against Differential Power Analysis for Elliptic Curve Cryptosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  8. Daemen, J., Rijmen, V.: The Rijndael Block Cipher (1999), http://ftp.csci.csusb.edu/ykarant/courses/w2005/csci531/papers/Rijndael.pdf

  9. Gura, N., Patel, A., Wander, A., Eberle, H., Shantz, S.C.: Comparing Elliptic Curve Cryptography and RSA on 8-bit CPUs. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 119–132. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to Elliptic Curve Cryptography. Springer-Verlag New York, Inc., Secaucus (2003)

    Google Scholar 

  11. Heydt-Benjamin, T.S., Chae, H.-J., Defend, B., Fu, K.: Privacy for Public Transportation. In: Danezis, G., Golle, P. (eds.) PET 2006. LNCS, vol. 4258, pp. 1–19. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. T. I. Incorporated. MSP430x2xx Family User’s Guide (Rev. H) (2011)

    Google Scholar 

  13. T.I. Incorporated. MSP43F261x Mixed Signal Microcontroller (2011)

    Google Scholar 

  14. Meloni, N.: New Point Addition Formulae for ECC Applications. In: Carlet, C., Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 189–201. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Menezes, A., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press (1996)

    Google Scholar 

  16. Montgomery, P.L.: Speeding the Pollard and Elliptic Curve Methods of Factorization. In: Mathematics of Computation, pp. 243–264 (1987)

    Google Scholar 

  17. Pendl, C., Pelnar, M., Hutter, M.: Elliptic Curve Cryptography on the WISP UHF RFID Tag. In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 32–47. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Certicom Research. SEC 2: Recommended elliptic curve domain parameters. In: Standards for Efficient Cryptography (2000), http://www.secg.org/download/aid-386/sec2-final.pdf

  19. Rivain, M.: Fast and Regular Algorithms for Scalar Multiplication over Elliptic Curves. IACR Cryptology ePrint Archive, 2011:338 (2011)

    Google Scholar 

  20. Sadeghi, A.-R., Visconti, I., Wachsmann, C.: User Privacy in Transport Systems Based on RFID E-Tickets. In: PiLBA (2008)

    Google Scholar 

  21. Zhang, H., Gummeson, J., Ransford, B., Fu, K.: Moo: A Batteryless Computational RFID and Sensing Platform (2011), https://web.cs.umass.edu/publication/docs/2011/UM-CS-2011-020.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hinterwälder, G., Paar, C., Burleson, W.P. (2013). Privacy Preserving Payments on Computational RFID Devices with Application in Intelligent Transportation Systems. In: Hoepman, JH., Verbauwhede, I. (eds) Radio Frequency Identification. Security and Privacy Issues. RFIDSec 2012. Lecture Notes in Computer Science, vol 7739. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36140-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36140-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36139-5

  • Online ISBN: 978-3-642-36140-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics