Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7606))

  • 2126 Accesses

Abstract

In this work we propose a self-adaptive clock based on a ring oscillator as the solution for the increasing uncertainty in the critical path delay. This increase in uncertainty forces to add more safety margins to the clock period which produces a circuit performance downgrade. We evaluate three self-adaptive clock systems: free running ring oscillator, infinite impulse response filter controlled RO and TEAtime controlled ring oscillator. The safety margin reduction of the three alternatives is investigated under different clock distribution delay conditions, dynamic variation frequencies and the presence of mismatch between the ring oscillator and the critical paths and the delay sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bowman, K., Duvall, S., Meindl, J.: Impact of die-to-die and within-die parameter fluctuations on the maximum clock frequency distribution for gigascale integration. IEEE Journal of Solid-State Circuits 37(2), 183–190 (2002)

    Article  Google Scholar 

  2. Ye, Y., Gummalla, S., Wang, C.-C., Chakrabarti, C., Cao, Y.: Random variability modeling and its impact on scaled cmos circuits. J. Comput. Electron. 9, 108–113 (2010)

    Article  Google Scholar 

  3. Bowman, K.A., Duvall, S.G., Meindl, J.D.: Impact of die-to-die and within-die parameter fluctuations on the maximum clock frequency distribution for gigascale integration. IEEE Journal of Solid State Circuits 37(2), 183–190 (2002)

    Article  Google Scholar 

  4. Steyaert, M., Van Breussegem, T., Meyvaert, H., Callemeyn, P., Wens, M.: Dc-dc converters: From discrete towards fully integrated cmos. In: 2011 Proceedings of the European Solid-State Device Research Conference (ESSDERC), pp. 59–66 (September 2011)

    Google Scholar 

  5. Lee, S.-S., Kim, T.-G., Yoo, J.-T., Kim, S.-W.: Process-and-temperature compensated cmos voltage-controlled oscillator for clock generators. Electronics Letters 39, 1484–1485 (2003)

    Article  Google Scholar 

  6. Sundaresan, K., Allen, P., Ayazi, F.: Process and temperature compensation in a 7-mhz cmos clock oscillator. IEEE Journal of Solid-State Circuits 41, 433–442 (2006)

    Article  Google Scholar 

  7. Drake, A., Senger, R., Singh, H., Carpenter, G., James, N.: Dynamic measurement of critical-path timing. In: IEEE International Conference on Integrated Circuit Design and Technology and Tutorial, ICICDT 2008, pp. 249–252 (June 2008)

    Google Scholar 

  8. Uht, A.: Going beyond worst-case specs with TEAtime. Computer 37, 51–56 (2004)

    Article  Google Scholar 

  9. Uht, A.: Uniprocessor performance enhancement through adaptive clock frequency control. IEEE Transactions on Computers 54, 132–140 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pérez-Puigdemont, J., Calomarde, A., Moll, F. (2013). PVTA Tolerant Self-adaptive Clock Generation Architecture. In: Ayala, J.L., Shang, D., Yakovlev, A. (eds) Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation. PATMOS 2012. Lecture Notes in Computer Science, vol 7606. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36157-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36157-9_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36156-2

  • Online ISBN: 978-3-642-36157-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics