Skip to main content

Configurations and Path Planning of Convex Planar Polygonal Loops

  • Conference paper
Algorithmic Foundations of Robotics X

Abstract

Polygonal loops are interesting both as classical geometric objects and in modeling practical engineering systems, e.g., grasping systems with fingers having planar revolute joints. Convex loop configurations and path planning between them are important since many naturally occurring manipulation poses for human and robotic hands are convex or close to convex, and current collision-free path planning methods for polygonal loops use convex configurations in intermediate steps. We prove that, in a set of triangle-based parameters, the space CConvex of convex configurations of a planar polygonal loop with fixed edge lengths and orientation, and one link pinned to the plane, is star-shaped with respect to an easily computed triangular configuration; with a further condition on edge lengths, CConvex is actually a convex polyhedron. Thus reconfiguration between identically oriented convex configurations of a planar polygonal loop can be achieved by one or two straight-line motions within CConvex. We conjecture that, in our parameter space, the straight-line motion joining any two such configurations passes through only non-self-intersecting configurations, although it may leave CConvex. These results are substantially simpler and more efficient than prior work, and demonstrate the importance of suitable system parametrization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aichholzer, O., Demaine, E.D., Erickson, J., Hurtado, F., Overmars, M., Soss, M.A., Toussaint, G.T.: Reconfiguring convex polygons. In: Proc. 12th Annual Canadian Conf. on Computational Geometry (CCCG 2000), pp. 17–20 (2000)

    Google Scholar 

  2. Bretl, T., McCarthy, Z.: Equilibrium configurations of a Kirchhoff elastic rod under quasi-static manipulation. In: Workshop on Algorithmic Foundations of Robotics, WAFR 2012 (2012)

    Google Scholar 

  3. Cantarella, J., Demaine, E.D., Iben, H., O’Brien, J.: An energy-driven approach to linkage unfolding. In: Proc. 20th Annual ACM Symp. on Computational Geometry (SoCG 2004), pp. 134–143 (June 2004)

    Google Scholar 

  4. Cauchy, A.L.: Deuxième mémoire sur les polygons et polyhèdres. Journal de l’École Polytechnique (9), 87–98 (1813)

    Google Scholar 

  5. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L.E., Thrun, S.: Principles of robot motion: Theory, algorithms, and implementations. MIT Press, Cambridge (2005)

    Google Scholar 

  6. Connelly, R., Demaine, E.D., Rote, G.: Straightening polygonal arcs and convexifying polygonal cycles. In: Proc. 41st Annual Symp. on Foundations of Computer Science (FOCS 2000), pp. 432–442 (2000)

    Google Scholar 

  7. Craig, J.J.: Introduction to robotics: Mechanics and control, 2nd edn. Addison-Wesley Publishing Company, Reading (1989)

    MATH  Google Scholar 

  8. Demaine, E.D., O’Rourke, J.: Geometric folding algorithms: Linkages, origami, polyhedra. Cambridge University Press (July 2007)

    Google Scholar 

  9. Gopalakrishnan, K., Goldberg, K.: D-Space and Deform Closure Grasps of Deformable Parts. Int. J. Robot. Res. 24(11), 899–910 (2005)

    Article  Google Scholar 

  10. Han, L., Amato, N.M.: A Kinematics-Based Probabilistic Roadmap Method for Closed Chain Systems. In: Donald, B.R., Lynch, K.M., Rus, D. (eds.) Algorithmic and Computational Robotics: New Directions (WAFR 2000), pp. 233–246 (2000)

    Google Scholar 

  11. Han, L., Rudolph, L., Blumenthal, J., Valodzin, I.: Stratified Deformation Space and Path Planning for a Planar Closed Chain with Revolute Joints. In: Akella, S., Amato, N.M., Huang, W.H., Mishra, B. (eds.) Algorithmic Foundation of Robotics VII. STAR, vol. 47, pp. 235–250. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Han, L., Rudolph, L., Blumenthal, J., Valodzin, I.: Convexly stratified deformation space and efficient path planning for a planar closed chain with revolute joints. Int. J. Robot. Res. 27, 1189–1212 (2008)

    Article  Google Scholar 

  13. Han, L., Rudolph, L., Dorsey-Gordon, S., Glotzer, D., Menard, D., Moran, J., Wilson, J.R.: Bending and kissing: Computing self-contact configurations of planar loops with revolute joints. In: ICRA (2009)

    Google Scholar 

  14. Kapovich, M., Millson, J.: On the moduli spaces of polygons in the euclidean plane. J. Diff. Geom. 42, 133–164 (1995)

    MATH  MathSciNet  Google Scholar 

  15. Latombe, J.C.: Robot motion planning. Kluwer Academic Publishers, Boston (1991)

    Book  Google Scholar 

  16. LaValle, S.M.: Planning algorithms. Cambridge University Press, Cambridge (2006), http://planning.cs.uiuc.edu/

    Book  MATH  Google Scholar 

  17. Lozano-Pérez, T.: Spatial Planning: A Configuration Space Approach. IEEE Trans. Computing 2, 108–120 (1983)

    Article  Google Scholar 

  18. Lenhart, W.J., Whitesides, S.H.: Reconfiguring closed polygon chains in euclidean d-space. Disc. Comput. Geom. 13, 123–140 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  19. Mason, M.: Mechanics of robotic manipulation. The MIT Press (2001)

    Google Scholar 

  20. Merlet, J.-P.: Parallel robots. Springer, New York (2000)

    Book  MATH  Google Scholar 

  21. Milgram, R.J., Trinkle, J.C.: The geometry of configuration spaces for closed chains in two and three dimensions. In: Homology Homotopy and Applications (2002)

    Google Scholar 

  22. Murray, R.M., Li, Z., Sastry, S.S.: A mathematical introduction to robotic manipulation. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

  23. Steinitz, E., Rademacher, H.: Vorlesungen über die Theorie der Polyeder. Springer, Berlin (1934) (reprinted 1976)

    Google Scholar 

  24. Streinu, I.: A combinatorial approach to plannar non-colliding robot arm motion planning. In: Proc. IEEE Symp. Foundations of Computer Science (FOCS), pp. 443–453 (2000)

    Google Scholar 

  25. Trinkle, J.C., Milgram, R.J.: Complete path planning for closed kinematic chains with spherical joints. Int. J. Robot. Res. 21(9), 773–789 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Han, L. et al. (2013). Configurations and Path Planning of Convex Planar Polygonal Loops. In: Frazzoli, E., Lozano-Perez, T., Roy, N., Rus, D. (eds) Algorithmic Foundations of Robotics X. Springer Tracts in Advanced Robotics, vol 86. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36279-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36279-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36278-1

  • Online ISBN: 978-3-642-36279-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics