Skip to main content

A Reversible Process Calculus and the Modelling of the ERK Signalling Pathway

  • Conference paper
Reversible Computation (RC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7581))

Included in the following conference series:

Abstract

We introduce a reversible process calculus with a new feature of execution control that allows us to change the direction and pattern of computation. This feature allows us to model a variety of modes of reverse computation, ranging from strict backtracking to reversing which respects causal ordering of events, and even reversing which violates causal ordering. The SOS rules that define the operators of the new calculus employ communication keys to handle communication correctly and key identifiers to control execution.

As an application of our calculus, we model the ERK signalling pathway which delivers mitogenic and differentiation signals from the membrane of a cell to its nucleus. The proteins participating in the pathway are represented by reversible processes in such a way that the pathway’s bio-chemical reactions are simply interactions between the processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berry, G., Boudol, G.: The chemical abstract machine. Theoretical Computer Science 96(1), 217–248 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blinov, M.L., Yang, J., Faeder, J.R., Hlavacek, W.S.: Graph Theory for Rule-Based Modeling of Biochemical Networks. In: Priami, C., Ingólfsdóttir, A., Mishra, B., Riis Nielson, H. (eds.) Transactions on Computational Systems Biology VII. LNCS (LNBI), vol. 4230, pp. 89–106. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Calder, M., Gilmore, S., Hillston, J.: Modelling the Influence of RKIP on the ERK Signalling Pathway Using the Stochastic Process Algebra PEPA. In: Priami, C., Ingólfsdóttir, A., Mishra, B., Riis Nielson, H. (eds.) Transactions on Computational Systems Biology VII. LNCS (LNBI), vol. 4230, pp. 1–23. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Cardelli, L., Laneve, C.: Reversible structures. In: 9th International Conference on Computational Methods in Systems Biology, pp. 131–140. ACM (2011)

    Google Scholar 

  5. Cho, K.-H., Shin, S.-Y., Kim, H.-W., Wolkenhauer, O., McFerran, B., Kolch, W.: Mathematical Modeling of the Influence of RKIP on the ERK Signaling Pathway. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 127–141. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-Based Modelling of Cellular Signalling. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 17–41. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Danos, V., Krivine, J.: Reversible Communicating Systems. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Danos, V., Krivine, J.: Transactions in RCCS. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 398–412. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Danos, V., Krivine, J.: Formal molecular biology done in CCS-R. In: Proceedings of the 1st Workshop on Concurrent Models in Molecular Biology BioConcur 2003. ENTCS, vol. 180, pp. 31–49 (2007)

    Google Scholar 

  10. Lanese, I., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Controlling Reversibility in Higher-Order Pi. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 297–311. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Lanese, I., Mezzina, C.A., Stefani, J.-B.: Reversing Higher-Order Pi. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 478–493. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Lanese, I., Mezzina, C.A., Stefani, J.-B.: Controlled Reversibility and Compensations. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS, vol. 7581, pp. 233–240. Springer, Heidelberg (2013)

    Google Scholar 

  13. Milner, R.: Communication and Concurrency. Prentice Hall (1989)

    Google Scholar 

  14. Mousavi, M., Phillips, I.C.C., Reniers, M.A., Ulidowski, I.: Semantics and expressiveness of Ordered SOS. Information and Computation 207(2), 85–119 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Phillips, I.C.C., Ulidowski, I.: Reversing Algebraic Process Calculi. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 246–260. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Phillips, I.C.C., Ulidowski, I.: Reversing algebraic process calculi. Journal of Logic and Algebraic Programming 73, 70–96 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Phillips, I.C.C., Ulidowski, I.: A logic with reverse modalities for history-preserving bisimulations. In: Proceedings 18th International Workshop on Expressiveness in Concurrency. EPTCS, vol. 64, pp. 104–118 (2011)

    Google Scholar 

  18. Phillips, I.C.C., Ulidowski, I.: A hierarchy of reverse bisimulations on stable configuration structures. Mathematical Structures in Computer Science 22, 333–372 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ulidowski, I., Phillips, I.C.C.: Ordered SOS rules and process languages for branching and eager bisimulations. Information and Computation 178(1), 180–213 (2002)

    MathSciNet  MATH  Google Scholar 

  20. Vera, J., Rath, O., Balsa-Canto, E., Banga, J.R., Kolch, W., Wolkenhauer, O.: Investigating dynamics of inhibitory and feedback loops in ERK signalling using power-law models. Molecular BioSystems 6, 2174–2191 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Phillips, I., Ulidowski, I., Yuen, S. (2013). A Reversible Process Calculus and the Modelling of the ERK Signalling Pathway. In: Glück, R., Yokoyama, T. (eds) Reversible Computation. RC 2012. Lecture Notes in Computer Science, vol 7581. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36315-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36315-3_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36314-6

  • Online ISBN: 978-3-642-36315-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics