Skip to main content

Undecidability of the Surjectivity of the Subshift Associated to a Turing Machine

  • Conference paper
Reversible Computation (RC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7581))

Included in the following conference series:

Abstract

We consider Turing machines (TM) from a dynamical system point of view, and in this context, we associate a subshift by taking the sequence of symbols and states that the head has at each instant. Taking a subshift that select only a part of the state of a system is a classical technic in dynamical systems that plays a central role in their analysis. Surjectivity of Turing machines is equivalent to their reversibility and it can be simply identified from the machine rule. Nevertheless, the associated subshift can be surjective even if the machine is not, and the property results to be undecidable in the symbolic system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gajardo, A., Mazoyer, J.: One head machines from a symbolic approach. Theor. Comput. Sci. 370, 34–47 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Gajardo, A., Guillon, P.: Zigzags in Turing Machines. In: Ablayev, F., Mayr, E.W. (eds.) CSR 2010. LNCS, vol. 6072, pp. 109–119. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Kari, J., Ollinger, N.: Periodicity and Immortality in Reversible Computing. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 419–430. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Kůrka, P.: On topological dynamics of Turing machines. Theoret. Comput. Sci. 174(1-2), 203–216 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blondel, V.D., Cassaigne, J., Nichitiu, C.: On the presence of periodic configurations in Turing machines and in counter machines. Theoret. Comput. Sci. 289, 573–590 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Oprocha, P.: On entropy and turing machine with moving tape dynamical model. Nonlinearity 19, 2475–2487 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kůrka, P.: Topological and Symbolic Dynamics. Société Mathématique de France, Paris, France (2003)

    Google Scholar 

  8. Morita, K., Shirasaki, A., Gono, Y.: A 1-tape 2-symbol reversible Turing machine. IEICE Transactions E72-E(3), 223–228 (1989)

    Google Scholar 

  9. Morita, K.: Universality of a reversible two-counter machine. Theor. Comput. Sci. 168(2), 303–320 (1996)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Torres, R., Ollinger, N., Gajardo, A. (2013). Undecidability of the Surjectivity of the Subshift Associated to a Turing Machine. In: Glück, R., Yokoyama, T. (eds) Reversible Computation. RC 2012. Lecture Notes in Computer Science, vol 7581. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36315-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36315-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36314-6

  • Online ISBN: 978-3-642-36315-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics