Abstract
We consider Turing machines (TM) from a dynamical system point of view, and in this context, we associate a subshift by taking the sequence of symbols and states that the head has at each instant. Taking a subshift that select only a part of the state of a system is a classical technic in dynamical systems that plays a central role in their analysis. Surjectivity of Turing machines is equivalent to their reversibility and it can be simply identified from the machine rule. Nevertheless, the associated subshift can be surjective even if the machine is not, and the property results to be undecidable in the symbolic system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Gajardo, A., Mazoyer, J.: One head machines from a symbolic approach. Theor. Comput. Sci. 370, 34–47 (2007)
Gajardo, A., Guillon, P.: Zigzags in Turing Machines. In: Ablayev, F., Mayr, E.W. (eds.) CSR 2010. LNCS, vol. 6072, pp. 109–119. Springer, Heidelberg (2010)
Kari, J., Ollinger, N.: Periodicity and Immortality in Reversible Computing. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 419–430. Springer, Heidelberg (2008)
Kůrka, P.: On topological dynamics of Turing machines. Theoret. Comput. Sci. 174(1-2), 203–216 (1997)
Blondel, V.D., Cassaigne, J., Nichitiu, C.: On the presence of periodic configurations in Turing machines and in counter machines. Theoret. Comput. Sci. 289, 573–590 (2002)
Oprocha, P.: On entropy and turing machine with moving tape dynamical model. Nonlinearity 19, 2475–2487 (2006)
Kůrka, P.: Topological and Symbolic Dynamics. Société Mathématique de France, Paris, France (2003)
Morita, K., Shirasaki, A., Gono, Y.: A 1-tape 2-symbol reversible Turing machine. IEICE Transactions E72-E(3), 223–228 (1989)
Morita, K.: Universality of a reversible two-counter machine. Theor. Comput. Sci. 168(2), 303–320 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Torres, R., Ollinger, N., Gajardo, A. (2013). Undecidability of the Surjectivity of the Subshift Associated to a Turing Machine. In: Glück, R., Yokoyama, T. (eds) Reversible Computation. RC 2012. Lecture Notes in Computer Science, vol 7581. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36315-3_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-36315-3_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36314-6
Online ISBN: 978-3-642-36315-3
eBook Packages: Computer ScienceComputer Science (R0)