
Synthesizing Loops For Program Inversion

Cong Hou1, Daniel Quinlan2, David Jefferson2,
Richard Fujimoto1, and Richard Vuduc1

1Georgia Institute of Technology
2Lawrence Livermore National Laboratory

hou_cong@gatech.edu,dquinlan@llnl.gov,jefferson6@llnl.gov

fujimoto@cc.gatech.edu,richie@cc.gatech.edu

Abstract. We propose a new automatic program inversion method for
imperative programs that contain loops. In particular, given a loop that
produces an output state given a particular input state, our method
can synthesize an inverse loop that reconstructs the input state given
the original loop’s output state. The synthesis process consists of two
major components: (a) building the inverse loop’s body, and (b) building
the inverse loop’s predicate. Our method works for all natural loops,
including those that take early exits (e.g., via breaks, gotos, returns).
This work extends a program analysis and synthesis framework, called
Backstroke1, that we developed in prior work.

Keywords: Program Inversion, Program Synthesis, Compilers

1 Introduction

We consider the problem of synthesizing program inverses. That is, given a pro-
gram P with input state I and output state O, its inverse or reverse program,
P−, produces I given O. Our primary motivation comes from optimistic parallel
discrete event simulation (OPDES). There, a simulator must process events while
respecting logical temporal event-ordering constraints; to extract parallelism, an
OPDES simulator may speculatively execute events and only rollback execution
when event-ordering violations occur [4]. In this context, the ability to perform
rollback by running time- and space-efficient P and P−, rather than saving and
restoring large amounts of state, can make OPDES more practical. Synthesiz-
ing inverses also appears in numerous other software engineering contexts, such
as debugging [1], synthesizing “undo” code, or even generating decompressors
automatically given only lossless compression code [10]. The challenge in any
of these contexts is that constructing program inverses manually is a tedious,
time-consuming, and error-prone task.

The program P will generally contain non-invertible statements, such as a
destructive assignment. However, in these cases it may still be possible to create
an inverse. In particular, we may create an instrumented version of P , called

1 As a sub-project of the ROSE compiler Backstroke can be downloaded here:
http://www.rosecompiler.org.

2 C. Hou, D. Quinlan, D. Jefferson, R. Fujimoto, and R. Vuduc

the forward program, P+, with semantics-preserving changes so that it becomes
possible to construct P− from P+. We then replace executions of P with P+.
For instance, suppose P overwrites a variable v. We may construct P+ so that it
saves the value of v prior to overwriting it. Then, P− need only restore the saved
value to recover v’s prior value. In this case, P+ produces extra outputs, which we
denote by S. Indeed, even if P is theoretically reversible without requiring extra
output, we may nevertheless need to generate S due to fundamental technical
limits on program analysis.

This paper extends our prior compiler-based program inversion framework,
called Backstroke [3], to handle the case of programs with loops. As a concrete
introductory example, consider the following program on the left, which takes
as input an integer n ≥ 0 and produces the output, s←

∑n
i=0 i:

s = 0; n = 0;

while (n > 0) { while (s > 0) {

s = s + n; n = n + 1;

n = n - 1; s = s - n;

} }

Our goal is to construct an inverse P− that recomputes n given s, as shown
above on the right. Our initial work on Backstroke proposed two new interme-
diate program representations, which we call the value search graph and route
graph representations. However, these representations could not represent loop
structure and hence could not generate the inverse shown above. The method of
this paper can; additionally, it can recognize certain special cases where synthesis
of an explicit forward program P+ can be avoided, as is the case in this example.
Such special cases are often a requirement in general software engineering (as
opposed to OPDES) contexts.

The above example is special in that the loop has single-entry and single-
exit points. Consequently, in the usual control-flow graph (CFG) analysis used
inside a compiler, the loop’s inputs and outputs are easy to identify and program
analysis becomes simpler, because the compiler may analyze the loop in relative
isolation from the rest of the program. To handle more complex loops, such as
those with multiple exits via break or return, we show how we can modify the
CFG to reduce it to the preceding simpler form (Section 3.2). Thus, our method
readily applies to the class of so-called natural loops.

Note that we use the terms, “program inverse” and “program inversion,”
even though strictly speaking an inverse for P (as opposed to the instrumented
forward program, P+) may not exist. Nevertheless, this terminology is standard
in our OPDES context, so we adhere to it in this paper [11].

2 Prior Foundations: Value Search and Route Graphs

Our work on program inversion for loops builds on a program analysis and
synthesis framework that we developed in our prior work. As noted previously,
the framework comprises two novel intermediate program representations, which
we refer to as value search graph and route graph [3]. This section summarizes the

Synthesizing Loops For Program Inversion 3

key ideas behind these representations, explaining how we use them to construct
both forward and reverse programs. (Please see our earlier paper for all the
formal details [3].) Section 3 describes our extensions for loops.

The basic program inversion workflow in our framework is as follows. Given
P , we first translate the program into a standard compiler intermediate program
representation known as single static assignment (SSA) form [2]. From the SSA
form, we construct a value search graph (VSG) [3]. The problem of finding a
forward or reverse program becomes a combinatorial search problem on the VSG.
The result of this search is a subgraph of the VSG, which we call a route graph
(RG) [3]. There may be many such search results, each of which is a particular
forward or reverse program. Lastly, from the RG we synthesize the actual code
that implements the forward or reverse program. The process is illustrated in
Figure 1. We elaborate on the process and discuss the example next.

The VSG essentially expresses equality relations between values in the pro-
gram. Given these relations, we can determine how values from the input I
eventually relate to the values produced during the execution of the forward
program P+, such as the values in the output O. To get the relations, we first
transform the program into SSA form. The SSA form is semantically equivalent
to the original program but has the special property that each variable is defined
only once. In the VSG, nodes represent constants, variables from the SSA, and
operators (e.g., “+” or “−” operations); directed edges represent either equality
or operand-operator relationships. Edges are also annotated with information
about the control-flow paths on which the particular equality relation exists,
allowing us to handle conditional branches. Lastly, if there is no way to retrieve
a desired value from computational operations alone, we will need to save that
value during the execution of P+ so we can later retrieve it in P−. Such a state
saving operation becomes an additional type of node in the VSG. Since state
saving may incur both time and space overheads to P+, we can add a suitable
cost to each edge incident to the state saving node.

Given the VSG, we locate target nodes, which contain all values we wish
to compute. For instance, if we want to build P− and reconstruct a particu-
lar value from the original input I, the corresponding node for that value in
the VSG becomes a target node. During the analysis of the VSG, some nodes
will be considered available. For example, when building P−, nodes containing
constants, the state saving node, and final outputs O of the original program
are available. Starting from the targets, we perform a path search through the
VSG looking for available nodes. The result of this search is a subgraph of the
VSG, which we call a route graph (RG). The search algorithm works in such a
way that it guarantees each value is retrieved only once for each control flow
graph (CFG) path. (The search for a RG that minimizes state-saving cost is
NP-Complete, which our prior paper both proves and provides heuristics to find
low-cost solutions [3].)

Finally, we generate P+ and P− from the RG. In the RG, for each edge
pointing to the state saving node, we will instrument P with a state saving
statement storing the corresponding value. Also, we use a bit vector to record

4 C. Hou, D. Quinlan, D. Jefferson, R. Fujimoto, and R. Vuduc

the control flow paths in P . Then P+ is generated by instrumenting P with
statements performing state savings and CFG path recording. To generate the
reverse program P−, we build a CFG for the reverse function from the RG, and
P− is generated from the CFG.

(e)

Entry

if (a0 == 0)

b1 = a0 + 10;

a2 = 0;
a1 = 1;

a3 = Φ(a1, a2);
b2 = Φ(b0, b1);

FT

Exit a0

b0

10

b1
1

a1

0

a2

Φ
a3

Φ
b2

0

+-

SS

{T}

{T,F}

{F}

{T,F} {F}

{F}

{T}

{F}

(d)

a0

b0

10

b1

Φ
b2

0

-

SS

{T}

{F}

{F}

{T}

{F}

(f)

void foo_forward() {
 int trace = 0;
 if (a == 0) {
 trace |= 1;
 a = 1;
 }
 else {
 store(b);
 b = a + 10;
 a = 0;
 }
 store(trace);
}

void foo_reverse() {
 int trace;
 restore(trace);
 if ((trace & 1) == 1)
 a = 0;
 else {
 a = b - 10;
 restore(b);
 }
}

(b) (c)(a)

int a, b;
void foo() {
 if (a == 0)
 a = 1;
 else {
 b = a + 10;
 a = 0;
 }
}

Fig. 1. (a) The original program. (b) The forward program. (c) The reverse program.
(d) The CFG in SSA form. (e) The VSG. Nodes in bold are available nodes and all
outgoing edges are removed from them. (f) The RG.

Figure 1 illustrates the entire process in a loop-free example. The original
program is the function foo. The variables a and b are both inputs and outputs.
The CFG in SSA form is shown in Figure 1(d). In SSA form, the input of this
program are a0 and b0, and the output are a3 and b2; note that the original
variables have subscripts in SSA form, which are referred to as versions of the
original variables. Observe that versioned variables are in the static program
assigned only once. (Programs with loops will need special treatment and exten-
sion.) From the SSA CFG, we then build the VSG shown in Figure 1(e). The
“SS” node is a special state-saving node. All outgoing edges from each available
node shown in bold are removed since the search always ends at available nodes.

Synthesizing Loops For Program Inversion 5

Each equality relation (edge) is constrained by a set of CFG paths. Since there
are only two paths in the program, we use T and F to represent the path passing
through the true and false bodies, respectively. Our goal is to retrieve a0 and b0,
which is done by searching the VSG to find a way to get its value for each CFG
path. The search result, which is the RG, appears in Figure 1(f). We build the
forward and reverse programs, Figures 1(b) and (c), respectively, from the RG.
(For details on this process, refer to our prior paper [3].)

3 Handling loops

Unmodified, our prior method as described in Section 2 cannot handle loops for
two key reasons. First, a loop results in cyclic paths in the CFG, whereas our prior
analysis relies on paths being acyclic. Acyclic paths make it easy to check that
the reverse program restores any desired input value no matter what path the
forward program takes. Secondly, our prior VSG and RG cannot represent loop
control structure. Therefore, it is simply not possible to synthesize, for example,
a loop in the reverse code from the RG. Nevertheless, we can reuse most of the
prior method by decomposing the problem suitably. In particular, we keep the
basic framework of “SSA to VSG to RG.” Our extension replaces SSA with a
loop-enabled variant, and then extends our VSG and RG representations and
algorithms to deal with cycles, thereby addressing the two aforementioned issues.

Let us first assume that each loop to be reversed is a single-entry, single-exit
while loop (we will explain what is a while loop later). We explain in Section 3.2
how to convert other kinds of loops into this form. We also assume that each
loop must terminates at run-time so that we can always get an output. Given
an input while loop, there are three steps to build a VSG.

1. We temporarily collapse each while loop into a single abstract node in the
CFG, thereby creating a logically loop-free CFG from which we can build
a VSG by directly applying our prior method. This “transformation” is for
program analysis purposes only. We denote this loop-collapsed VSG by GP .

2. Similarly, we directly apply our prior method to build a VSG for each loop
body, which may be treated as another loop-free program. (If the body con-
tains nested loops, these are similarly collapsed as in Step 1 above.) Note
that path information in these loop body VSGs are local to the loop body.
We denote this VSG for the loop body by GL.

3. At this point, GP and GL are disconnected. Therefore, we introduce new
special edges to connect them, thereby resulting in a single connected VSG.
These connecting edges are a new type of edge and constitute the main
extension to our prior VSG in order to support loops. The new edges connect
each input (or output) of a loop to the input (or output) of the loop’s body.
These new edges serve as markers: when we search the VSG and produce an
RG containing these edges, then we know we need to synthesize a loop.

Since Steps 1 and 2 use our prior VSG construction, we need not discuss them
further here. What changes is the third step, as detailed below, including new

6 C. Hou, D. Quinlan, D. Jefferson, R. Fujimoto, and R. Vuduc

VSG searching rules and new procedures for synthesizing loops from the search
result (i.e., the RG).

vin

vI
in = μ(vin, vI

out);
while(...)

 vI
out =...;

vout= η(vI
in);

A

B

T

F

(a) (b)

T

F

μ vI
in

vin
μ'
vI

out

η
vout

forward edge
reverse edge
(c)

Fig. 2. (a) The diagram of a while loop. (b) The CFG in loop-closed SSA form for a
variable v modified in the loop. (c) Forward and reverse edges.

3.1 Dealing with while loops

We first consider a while loop with the diagram shown in Figure 2(a). We further
assume that A has no side-effects and that there are no escapes from B. Thus,
the loop only exits from its entry.

Given such a while loop, we transform it into the loop-closed SSA form [9], il-
lustrated in Figure 2(b). Loop-closed SSA differs from conventional loop-free SSA
as follows. In conventional SSA, a special marker called a φ function is placed in
the CFG at the first program point where two distinct versions (definitions) of a
variable, computed along different program paths, meet. In loop-closed SSA, if
a value is defined inside of a loop and used outside of it, we place a special single
entry φ function at the exit of the loop. To distinguish this type of loop-specific φ
function from a conventional φ function as used in loop-free programs, we denote
the loop-specific form by the term η function, by convention [7]. Additionally,
suppose a definition of a variable from outside the loop and a definition coming
from a back-edge of the loop meet at a program point. Again, we create a φ
function marker here, and to distinguish it, we refer to it as a µ function.

To see how these markers work, consider a variable v modified by a while
loop; we now describe the corresponding loop-closed SSA form, which Figure 2(b)
illustrates. Let vin denote the input value of v before the loop executes, and vout

the output value of v after the loop executes. Next, let the input to the loop
body be vIin and the output vIout. (The superscript I is intended to remind the
reader that these are values associated with an iteration of the loop, as opposed
to the values before and after the loop.) Then, vIin is defined by a µ function as
vIin = µ(vin, v

I
out), and vout is defined by a η function as vout = η(vIin). That is,

vIin = µ(vin, v
I
out) indicates the program point at which v has either the initial

value before the loop executes or the value produced by some iteration of the

Synthesizing Loops For Program Inversion 7

loop; and vout = η(vIin) indicates the program point at which v has the final
value once the loop completes.

From this loop-closed SSA form, we wish to build a VSG that will express
equality relations among the four SSA values, vin, vout, v

I
in, and vIout. This VSG

result is shown in Figure 2(c). Recall that nodes in the VSG represent values, and
edges the equality relations. There are four value nodes. The nodes vin and vout

are part of the loop-collapsed GP , and vIin and vIout belong to the loop body’s GL.
The µ and η functions indicate how to connect GP and GL. In particular, the
three solid bold edges are associated with the dependences induced by executing
the loop in the forward direction; we call these the forward edges, and a µ
node is incident to all three. The presence of these edges make it possible to
obtain vout by some path passing through GL, and simultaneously indicate that a
loop is present for subsequent code generation. Similarly, the three dashed edges
are reverse edges associated with dependences induced in the reverse direction.
These edges make it possible to obtain vin by some path through GL. Note that
the reverse edges form a symmetry to the forward edges. From this symmetry,
we define the node incident to all three reverse edges as a µ′ node. Later we will
show how the search traverses these edges.

Having built the CFG, the next step is to search it, producing the RG result.
Recall from Section 2 that we are given a set of target nodes whose values we
wish to eventually compute from a starting set of available nodes. We search for
a path from available nodes to target nodes; the subgraph representing paths
is the RG, which is not necessarily unique. Our algorithm is similar to the one
we have described previously [3], but for loops we need three additional search
rules:

– During a search for a value, once a forward/reverse edge is selected, all edges
in the other category cannot be chosen. This is because either a forward or
a reverse loop will be built to retrieve the value.

– When the search reaches a µ or µ′ node, it will be split into two sub-searches,
in GP and GL, respectively, through the two outgoing forward or reverse
edges. For example, in Figure 2(c), if the search reaches vIin, the algorithm
begins two sub-searches beginning with vin and vIout.

– During the search, the algorithm may form a directed cycle only in GL;
furthermore, such a cycle must contain a forward or reverse edge between a
µ and µ′ node. Once a cycle is formed, the search in GL is complete.

We build a while loop as either a forward or a reverse loop. Synthesizing such a
while loop consists of synthesizing its body and predicate.

Building the loop body. The loop body in the reverse program is generated
from the search result in GL. For each variable we remove the edge between the
µ and µ′ nodes and hence remove the cycles, so that we can generate the loop
body using our prior code generation algorithm [3].

8 C. Hou, D. Quinlan, D. Jefferson, R. Fujimoto, and R. Vuduc

Building the loop predicate. To guarantee that the generated loop has the
same iterations at runtime as the original loop, we need to build a proper loop
predicate. We propose three approaches to building a correct loop predicate. To
illustrate those approaches, we temporarily introduce the following loop example.
We assume that the omitted statements modify neither A[] nor i.

i = 0;

while (A[i] > 0) {

/* ... */

i = i + 2;

}

– Approach 1: Building the same loop predicate as that in the original loop.
To build this predicate, we need to retrieve each value in the predicate. A
new search is needed to acquire those values, and the search result will be
combined into the RG generated above. For the example above, we can build
a loop below that has the same number of iterations as the original one. The
omitted statements will be substituted by the loop body built above.

i = 0;

while (A[i] > 0) {

/* ... */

i = i + 2;

}

– Approach 2: Building the loop predicate from a variable updated in the
loop. Given a variable v and its four definitions: vin, vIin, vIout, and vout, if
vIin 6=vout in each iteration except the last definition of vIin (which is actually
vout), and if we can retrieve vin and vout before the loop (hence we cannot
retrieve them through the loop), and vIout in the loop, we can use them to
build a while loop as:

u := vin; while(u 6= vout) { / ∗ update u ∗ / }

Similarly, if vIout 6=vin in each iteration, and vin and vout can be retrieved
before the loop, and vIin can be retrieved in the loop, we can use them to
build a while loop as:

u := vout; while(u 6= vin) { / ∗ update u ∗ / }

In general, it is difficult to detect all variables satisfying the properties above.
However, there are some special cases. One case is that of monotonic vari-
ables [12], which are monotonically strictly increasing or decreasing in each
iteration. Another is that of induction variables, which are special monotonic
variables that are relatively easier to recognize. In the above example, i is an
induction variable. Assume its final value after the loop is i1 that is known,
and then we can build the following loop with the predicate using i.

Synthesizing Loops For Program Inversion 9

i = 0;

while (i != i1) {

/* ... */

i = i + 2;

}

– Approach 3: Instrumenting the original loop with a counter counting the
number of iterations. The counter has the initial value zero and is incre-
mented by one on each back edge of the loop. The final value of the counter
is stored in the forward program and restored in the reverse program as the
maximum value of another loop counter. This approach generally works if
either of the above two approaches fail. However, it requires instrumenta-
tion (the counter), and therefore forces generation of a forward program.
Below we show the instrumented loop in the forward program (left) and the
generated loop in the reverse program (right) for the above example.

i = count = 0; restore(count);

while (A[i] > 0) { while (count > 0) {

/* ... */ /* ... */

i = i + 2; count = count - 1;

count = count + 1; }

}

store(count);

We prioritize these approaches as follows. Applicability and state-saving cost
are our main criteria. We prefer Approach 1 and 2 over 3. When either 1 or 2
apply, if no state-saving is required, we apply them. Otherwise, we try Approach
3 and choose the overall approach with the least cost.

As an example, suppose we apply this algorithm to the loop in Figure 3(a).
Figure 3(b) shows its CFG in loop-closed SSA. The input is n0 and the output s3.
Our goal is to generate a reverse program that takes s3 as input and produces
n0. We build the VSG shown in Figure 3(c), with forward and reverse edges
shown as bold and dashed edges, respectively. Note that the equality between
n3 and 0 is acquired from solving constraints, a standard compiler technique, as
discussed in Section 3.3.2 The search result for value n0 is shown in Figure 3(d),
from which we can build the loop body as { n = n + 1; }.

Next, we build the loop predicate. In our example, because we wish to retrieve
the initial value of n, we cannot use it to build the loop predicate. We can discover
that s is a monotonic variable, and that both the initial and final values of s,
which are 0 and s3, respectively, are available. To get s2, we search its value on
the VSG and the search result is shown in Figure 3(e). As a result, we build the
loop predicate from s and the reverse program is generated as below.

n = 0;

2 For clarify, we remove the equality n1 = s2 − s1, as this relation will not be used
during the search.

10 C. Hou, D. Quinlan, D. Jefferson, R. Fujimoto, and R. Vuduc

s0 = 0;

s1 = μ(s0, s2);
n1 = μ(n0, n2);
while(n1 > 0)

 s2 = s1 + n1;
 n2 = n1 - 1;

s3 = η(s1);
n3 = η(n1);

(b)

T

F

μ'
n2

η
n3

μ
n1

n0

-- ++

0
s0

μ
s1

μ'
s2

η
s3

0

+

μ'
n2

η
n3

μ
n1

n0

++

0
s0

μ
s1

μ'
s2

η
s3

0

(c) (d)

-

μ'
n2

η
n3

μ
n1

n0

++

0
s0

μ
s1

μ'
s2

η
s3

0

(e)

-

// input: n (n >= 0)

s = 0;
while (n > 0) {
 s = s + n;
 n = n - 1;
}

// output: s

(a)

Available node Target node Forward edge Reverse edge

Fig. 3. (a) The program of our example. (b) The CFG in loop-closed SSA form. (c)
The VSG. (d) The RG for retrieving n3. (e) The RG for retrieving n0 and s2.

while (s != 0) {

n = n + 1;

s = s - n;

}

3.2 Dealing with loops other than while loops

In practice, the vast majority of loops have a single entry, which are called
natural loops [5]. Loops with more than one entry are quite rare and can in
fact be transformed into natural loops [5]. However, it is quite common that
a loop has several exits. For example, in C/C++ we may exit a loop early
through break, return, or goto statements. Nevertheless, given a non-while
natural loop, we can transform it to separate the last iteration from the loop;

Synthesizing Loops For Program Inversion 11

then, the remaining iterations form a new while loop, and the last iteration will
not belong to the loop and hence can considered with the control flows outside of
the loop. We then process the new while loop as previously described. Note that
this “transformation” is only applied to the CFG during the analysis, and not
to the original program. As such, in the forward program P+ the last iteration
and other iterations of each loop continue to share the same code.

Figure 4(a) shows a loop in a CFG, with a header (node 1) and two back edges
(4→1 and 5→1). There are two different exits from this loop, which are nodes 6
and 7. Figure 4(b) shows the CFG of the transformed loop. This transformation
is performed as follows.

In a natural loop, only the last iteration takes the exit, and any other iteration
goes back to the loop header. Therefore, if the last iteration is peeled off from
the loop, this loop will turn into a while loop. To implement this transformation,
we create a new branch node with an unknown predicate that returns true if
the next iteration is not the last one and false otherwise. Note that we will not
build this predicate in the forward program. The new branch node turns over
all in-edges of the loop header. Its true labeled out-edge will point to the loop
header of a copy of the loop (node 1′) with back edges but without exit edges,
and all back edges are redirected to this new branch node making it a new loop
header. Note that after removing exit edges it is possible that a previous branch
node becomes a non-branch node (node 3′, for example), which is fine because
the removed branch edge will not be taken. Then, we can remove the (side effect
free) predicates from those nodes. The edge labeled with false from the new
branch node will point to the original loop header (node 1) and all back edges in
the original loop are removed, since the last iteration won’t take the back edge.
The nodes from which the exit of the program is not reachable due to the back
edge removal are removed (node 4 and 5, for example). Again the predicate is
removed from a node once it is not a branch node anymore (node 2 and 3).

2

3 4

5

6

1

(a) (b)

2

3 4

5

6

1

2'

3' 4'

5'

1'

0

F T

7
7

TF

Fig. 4. (a) A loop in CFG with two back edges and two exits. (b) The CFG of the
transformed loop.

12 C. Hou, D. Quinlan, D. Jefferson, R. Fujimoto, and R. Vuduc

After the transformation, all loops in the program become while loops and
our method applies.

3.3 Discussion

Equality from solving constraints. We use constraint solving to obtain any
needed equalities. For example, if a ≥ b and a ≤ b, then a = b. This method is
useful to get the final value of a loop counter. A typical example is shown below:

i = 0; while (i < N) { ...; i = i + 1; }

where i is a loop counter incremented by one in each iteration, and N ≥ 0. In
Floyd-Hoare logic [6], the partial correctness of a while loop is governed by the
following rule of inference [8]:

{C ∧ I} body {I}
{I} while (C) body {¬C ∧ I}

where C is the while condition, and I is a loop invariant, which is informally
defined as a statement of the conditions that should be true on entry into a
loop and are guaranteed to remain true on every iteration of the loop. In this
example, we choose i ≤ N as a loop invariant. After replacing C and I with
i < N and i ≤ N , the postcondition at the end of the loop {¬C ∧ I} becomes
¬(i < N) ∧ i ≤ N , from which we get i = N .

Rebuilding control flows for the reverse program. In our prior work [3],
we record the runtime control flow paths in the forward program using a bit
vector. Specifically, a bit is used to record which path is taken at each two-way
branch node. The bit vector is stored at the end of the forward program and
is used to rebuild the control flows in the reverse program. This method has
both low time and space overhead. However, for program with loops, recording
control flows in each iteration of a loop may bring considerable space overhead.

To avoid this overhead, we found that we could calculate the control flows
instead of storing and restoring them. Basically, there are two ways to do that.
First, for a predicate in the original program, we can recover all values used in
the predicate in the reverse program, then use those values to produce the result
of the predicate. Second, if there is a φ function defined at a join node in the
original program as v2 = φ(v0, v1), and v0 and v1 cannot have the same value,
then if we can get the value range of v0 or v1 and retrieve the value of v2 , we
can build a predicate by checking if the value of v2 is in the value range of v0 or
v1. More details will be introduced in our future publications.

4 Conclusion and future work

With our loop handling methods, Backstroke can now handle a variety of pro-
grams that operate on scalar variables. The next major direction for this work

Synthesizing Loops For Program Inversion 13

are to handle array programs and programs that manipulate complex data struc-
tures, such as linked data structures. However, our work to date lays the critical
foundations for such extensions; for example, the index of an array is a scalar
that can be retrieved in a loop using the method described in this paper. Our fu-
ture work will focus on synthesizing reverse programs that use arrays and object
accesses. We are particularly interested in whether our techniques can be used
to reverse programs known to be reversible by computation, such as lossless
compression and decompression, encryption and decryption, among numerous
others.

Acknowledgements

This work was supported in part by the National Science Foundation (NSF),
under CAREER award number 0953100, and grants from the U.S. Department
of Energy (DOE) through Lawrence Livermore National Laboratory (LLNL)
LDRD project 10-ERD-025. Any opinions, findings and conclusions or recom-
mendations expressed in this material are those of the authors and do not nec-
essarily reflect those of NSF, DOE, or LLNL.

References

1. B. Biswas and R. Mall. Reverse execution of programs. ACM SIGPLAN Notices,
34(4):61–69, Apr. 1999.

2. R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently
computing static single assignment form and the control dependence graph. ACM
Transactions on Programming Languages and Systems, 13(4):451–490, Oct. 1991.

3. C. Hou, G. Vulov, D. Quinlan, D. Jefferson, R. Fujimoto, and R. Vuduc. A new
method for program inversion. Compiler Construction, 2012.

4. D. R. Jefferson. Virtual time. ACM Transactions on Programming Languages and
Systems, 7(3):404–425, July 1985.

5. S. S. Muchnick. Advanced Compiler Design Implementation. Morgan Kaufmann
Publishers, 1997.

6. V. R. Pratt. Semantical consideration on floyo-hoare logic. 17th Annual Symposium
on Foundations of Computer Science, 1976.

7. Robert A. Ballance, Arthur B. Maccabe, and Karl J. Ottenstein. The Program
Dependence Web: A Representation Supporting Control-, Data-, and Demand-
Driven Interpretation of Imperative Language. In PLDI 1990, 1990.

8. G. Rosu, C. Ellison, and W. Schulte. Matching logic: An alternative to hoare/floyd
logic. Proceedings of the 13th international conference on Algebraic methodology
and software technology, 2010.

9. Sebastian Pop, Pierre Jouvelot, and Georges-Andre Silber. In and Out of SSA : A
Denotational Specification. Static Single-Assignment Form Seminar, 2009.

10. S. Srivastava, S. Gulwani, S. Chaudhuri, and J. S. Foster. Path-based inductive
synthesis for program inversion. In PLDI ’11. ACM Press, 2011.

11. G. Vulov, C. Hou, R. Vuduc, D. Quinlan, R. Fujimoto, and D. Jefferson. The back-
stroke framework for source level reverse computation applied to parallel discrete
event simulation. Winter Simulation Conference, 2011.

12. M. Wolfe. Beyond Induction Variables. In Proceedings of the ACM SIGPLAN 1992
conference on Programming language design and implementation (PLDI), 1992.

