Skip to main content

Self-adaptation for Mobile Robot Algorithms Using Organic Computing Principles

  • Conference paper
Architecture of Computing Systems – ARCS 2013 (ARCS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7767))

Included in the following conference series:

Abstract

Many mobile robot algorithms require tedious tuning of parameters and are, then, often suitable to only a limited number of situations. Yet, as mobile robots are to be employed in various fields from industrial settings to our private homes, changes in the environment will occur frequently. Organic computing principles such as self-organization, self-adaptation, or self-healing can provide solutions to react to new situations, e.g. provide fault tolerance. We therefore propose a biologically inspired self-adaptation scheme to enable complex algorithms to adapt to different environments. The proposed scheme is implemented using the Organic Robot Control Architecture (ORCA) and Learning Classifier Tables (LCT). Preliminary experiments are performed using a graph-based Visual Simultaneous Localization and Mapping (SLAM) algorithm and a publicly available benchmark set, showing improvements in terms of runtime and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brockmann, W., Maehle, E., Grosspietsch, K.E., Rosemann, N., Jakimovski, B.: ORCA: An organic robot control architecture. In: Müller-Schloer, C., Schmeck, H., Ungerer, T. (eds.) Organic Computing - A Paradigm Shilft for Complex Systems. Birkhäuser-Springer (2011)

    Google Scholar 

  2. Wilson, S.W.: Classifier fitness based on accuracy. Evolutionary Computation 3(2), 149–175 (1995)

    Article  Google Scholar 

  3. Bradbury, J.S., Cordy, J.R., Dingel, J., Wermelinger, M.: A survey of self-management in dynamic software architecture specifications. In: ACM SIGSOFT Workshop on Self-Managed Systems (WOSS), pp. 28–33 (2004)

    Google Scholar 

  4. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: Future of Software Engineering (FOSE), pp. 259–268 (2007)

    Google Scholar 

  5. Cheng, B.H., Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J., Becker, B., Bencomo, N., Brun, Y., Cukic, B., Marzo Serugendo, G., Dustdar, S., Finkelstein, A., Gacek, C., Geihs, K., Grassi, V., Karsai, G., Kienle, H.M., Kramer, J., Litoiu, M., Malek, S., Mirandola, R., Müller, H.A., Park, S., Shaw, M., Tichy, M., Tivoli, M., Weyns, D., Whittle, J.: Software engineering for self-adaptive systems, pp. 1–26. Springer, Heidelberg (2009)

    Google Scholar 

  6. Richter, U., Mnif, M., Branke, J., Müller-Schloer, C., Schmeck, H.: Towards a generic observer/controller architecture for organic computing. In: Hochberger, C., Liskowsky, R. (eds.) INFORMATIK 2006 - Informatik für Menschen!, pp. 112–119. Bonner Köllen Verlag (2006)

    Google Scholar 

  7. Garlan, D., Schmerl, B., Cheng, S.W.: Software Architecture-Based Self-Adaptation, pp. 31–55. Springer (2009)

    Google Scholar 

  8. Yu, C.H., Nagpal, R.: Self-adapting modular robotics: A generalized distributed consensus framework. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1881–1888 (2009)

    Google Scholar 

  9. Edwards, G., Garcia, J., Tajalli, H., Popescu, D., Medvidovic, N., Sukhatme, G., Petrus, B.: Architecture-driven self-adaptation and self-management in robotics systems. In: ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), pp. 142–151 (2009)

    Google Scholar 

  10. Al-Homsy, A., Hartmann, J., Maehle, E.: Inclination detection and adaptive walking for low-cost six-legged walking robots using organic computing principles. In: Climbing and Walking Robots (CLAWAR), pp. 173–182 (2012)

    Google Scholar 

  11. Maehle, E., Brockmann, W., Grosspietsch, K.E., El Sayed Auf, A., Jakimovski, B., Krannich, S., Litza, M., Maas, R., Al-Homsy, A.: Application of the organic robot control architecture ORCA to the six-legged walking robot OSCAR. In: Müller-Schloer, C., Schmeck, H., Ungerer, T. (eds.) Organic Computing - A Paradigm Shilft for Complex Systems, Birkhäuser-Springer (2011)

    Google Scholar 

  12. Maas, R., Maehle, E.: Fault tolerant and adaptive path planning for mobile robots based on health signals. In: International Conference on Architecture of Computing Systems (ARCS), Workshop on Dependability and Fault-Tolerance, pp. 58–63 (2011)

    Google Scholar 

  13. Zeppenfeld, J., Bouajila, A., Stechele, W., Herkersdorf, A.: Learning classifier tables for autonomic systems on chip. Lecture Notes in Informatics, vol. 134, pp. 771–778. Springer, GI, Jahrestagung (2008)

    Google Scholar 

  14. Wilson, S.W.: Classifier fitness based on accuracy. Evolutionary Computation 3(2), 149–175 (1995)

    Article  Google Scholar 

  15. Endres, F., Hess, J., Engelhard, N., Sturm, J., Cremers, D., Burgard, W.: An evaluation of the RGB-D SLAM system. In: IEEE International Conference on Robotics and Automation, ICRA (2012)

    Google Scholar 

  16. Strasdat, H., Davison, A.J., Montiel, J., Konolige, K.: Double window optimisation for constant time visual SLAM. In: IEEE International Conference on Computer Vision, ICCV (2011)

    Google Scholar 

  17. Rosten, E., Drummond, T.W.: Machine Learning for High-Speed Corner Detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: Binary robust independent elementary features, 778–792 (2010)

    Google Scholar 

  19. Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: g2o: A general framework for graph optimization. In: IEEE International Conference on Robotics and Automation, ICRA (2011)

    Google Scholar 

  20. Lepetit, V., Moreno-Noguer, F., Fua, P.: EPnP: An accurate O(n) solution to the PnP problem. International Journal of Computer Vision 81(2), 155–166 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hartmann, J., Stechele, W., Maehle, E. (2013). Self-adaptation for Mobile Robot Algorithms Using Organic Computing Principles. In: Kubátová, H., Hochberger, C., Daněk, M., Sick, B. (eds) Architecture of Computing Systems – ARCS 2013. ARCS 2013. Lecture Notes in Computer Science, vol 7767. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36424-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36424-2_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36423-5

  • Online ISBN: 978-3-642-36424-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics