Skip to main content

Generalized Probabilistic Approximations

  • Chapter
Transactions on Rough Sets XVI

Part of the book series: Lecture Notes in Computer Science ((TRS,volume 7736))

Abstract

We study generalized probabilistic approximations, defined using both rough set theory and probability theory. The main objective is to study, for a given subset of the universe U, all such probabilistic approximations, i.e., for all parameter values. For an approximation space (U, R), where R is an equivalence relation, there is only one type of such probabilistic approximations. For an approximation space (U, R), where R is an arbitrary binary relation, three types of probabilistic approximations are introduced in this paper: singleton, subset and concept. We show that for a given concept the number of probabilistic approximations of given type is not greater than the cardinality of U. Additionally, we show that singleton probabilistic approximations are not useful for data mining, since such approximations, in general, are not even locally definable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pawlak, Z., Wong, S.K.M., Ziarko, W.: Rough sets: probabilistic versus deterministic approach. International Journal of Man-Machine Studies 29, 81–95 (1988)

    Article  MATH  Google Scholar 

  2. Tsumoto, S., Tanaka, H.: PRIMEROSE: probabilistic rule induction method based on rough sets and resampling methods. Computational Intelligence 11, 389–405 (1995)

    Article  Google Scholar 

  3. Yao, Y.: Decision-Theoretic Rough Set Models. In: Yao, J., Lingras, P., Wu, W.-Z., Szczuka, M.S., Cercone, N.J., ÅšlÄ™zak, D. (eds.) RSKT 2007. LNCS (LNAI), vol. 4481, pp. 1–12. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Yao, Y.Y., Wong, S.K.M.: A decision theoretic framework for approximate concepts. International Journal of Man-Machine Studies 37, 793–809 (1992)

    Article  Google Scholar 

  5. Yao, Y.Y., Wong, S.K.M., Lingras, P.: A decision-theoretic rough set model. In: Proceedings of the 5th International Symposium on Methodologies for Intelligent Systems, pp. 388–395 (1990)

    Google Scholar 

  6. Ziarko, W.: Variable precision rough set model. Journal of Computer and System Sciences 46(1), 39–59 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ziarko, W.: Probabilistic approach to rough sets. International Journal of Approximate Reasoning 49, 272–284 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Grzymala-Busse, J.W., Marepally, S.R., Yao, Y.: An Empirical Comparison of Rule Sets Induced by LERS and Probabilistic Rough Classification. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds.) RSCTC 2010. LNCS, vol. 6086, pp. 590–599. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Grzymala-Busse, J.W.: Rough set strategies to data with missing attribute values. In: Workshop Notes, Foundations and New Directions of Data Mining, in Conjunction with the 3rd International Conference on Data Mining, pp. 56–63 (2003)

    Google Scholar 

  10. GrzymaÅ‚a-Busse, J.W.: Data with Missing Attribute Values: Generalization of Indiscernibility Relation and Rule Induction. In: Peters, J.F., Skowron, A., GrzymaÅ‚a-Busse, J.W., Kostek, B.z., Swiniarski, R., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 78–95. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. GrzymaÅ‚a-Busse, J.W.: Generalized Parameterized Approximations. In: Yao, J., Ramanna, S., Wang, G., Suraj, Z. (eds.) RSKT 2011. LNCS, vol. 6954, pp. 136–145. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)

    MATH  Google Scholar 

  13. Grzymala-Busse, J.W.: A new version of the rule induction system LERS. Fundamenta Informaticae 31, 27–39 (1997)

    MATH  Google Scholar 

  14. Grzymala-Busse, J.W.: MLEM2: A new algorithm for rule induction from imperfect data. In: Proceedings of the 9th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, pp. 243–250 (2002)

    Google Scholar 

  15. Grzymala-Busse, J.W., RzÄ…sa, W.: Definability and Other Properties of Approximations for Generalized Indiscernibility Relations. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets XI. LNCS, vol. 5946, pp. 14–39. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Kryszkiewicz, M.: Rough set approach to incomplete information systems. In: Proceedings of the Second Annual Joint Conference on Information Sciences, pp. 194–197 (1995)

    Google Scholar 

  17. Kryszkiewicz, M.: Rules in incomplete information systems. Information Sciences 113, 271–292 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lin, T.Y.: Neighborhood systems and approximation in database and knowledge base systems. In: Proceedings of the ISMIS 1989, the Fourth International Symposium on Methodologies of Intelligent Systems, pp. 75–86 (1989)

    Google Scholar 

  19. Lin, T.Y.: Topological and fuzzy rough sets. In: Slowinski, R. (ed.) Intelligent Decision Support. Handbook of Applications and Advances of the Rough Sets Theory, pp. 287–304. Kluwer Academic Publishers, Dordrecht (1992)

    Chapter  Google Scholar 

  20. Slowinski, R., Vanderpooten, D.: A generalized definition of rough approximations based on similarity. IEEE Transactions on Knowledge and Data Engineering 12, 331–336 (2000)

    Article  Google Scholar 

  21. Stefanowski, J., Tsoukiàs, A.: On the Extension of Rough Sets under Incomplete Information. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 73–82. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  22. Stefanowski, J., Tsoukias, A.: Incomplete information tables and rough classification. Computational Intelligence 17(3), 545–566 (2001)

    Article  Google Scholar 

  23. Yao, Y.Y.: Relational interpretations of neighborhood operators and rough set approximation operators. Information Sciences 111, 239–259 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grzymala-Busse, J.W. (2013). Generalized Probabilistic Approximations. In: Peters, J.F., Skowron, A., Ramanna, S., Suraj, Z., Wang, X. (eds) Transactions on Rough Sets XVI. Lecture Notes in Computer Science, vol 7736. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36505-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36505-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36504-1

  • Online ISBN: 978-3-642-36505-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics