Abstract
We study generalized probabilistic approximations, defined using both rough set theory and probability theory. The main objective is to study, for a given subset of the universe U, all such probabilistic approximations, i.e., for all parameter values. For an approximation space (U, R), where R is an equivalence relation, there is only one type of such probabilistic approximations. For an approximation space (U, R), where R is an arbitrary binary relation, three types of probabilistic approximations are introduced in this paper: singleton, subset and concept. We show that for a given concept the number of probabilistic approximations of given type is not greater than the cardinality of U. Additionally, we show that singleton probabilistic approximations are not useful for data mining, since such approximations, in general, are not even locally definable.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Pawlak, Z., Wong, S.K.M., Ziarko, W.: Rough sets: probabilistic versus deterministic approach. International Journal of Man-Machine Studies 29, 81–95 (1988)
Tsumoto, S., Tanaka, H.: PRIMEROSE: probabilistic rule induction method based on rough sets and resampling methods. Computational Intelligence 11, 389–405 (1995)
Yao, Y.: Decision-Theoretic Rough Set Models. In: Yao, J., Lingras, P., Wu, W.-Z., Szczuka, M.S., Cercone, N.J., Ślęzak, D. (eds.) RSKT 2007. LNCS (LNAI), vol. 4481, pp. 1–12. Springer, Heidelberg (2007)
Yao, Y.Y., Wong, S.K.M.: A decision theoretic framework for approximate concepts. International Journal of Man-Machine Studies 37, 793–809 (1992)
Yao, Y.Y., Wong, S.K.M., Lingras, P.: A decision-theoretic rough set model. In: Proceedings of the 5th International Symposium on Methodologies for Intelligent Systems, pp. 388–395 (1990)
Ziarko, W.: Variable precision rough set model. Journal of Computer and System Sciences 46(1), 39–59 (1993)
Ziarko, W.: Probabilistic approach to rough sets. International Journal of Approximate Reasoning 49, 272–284 (2008)
Grzymala-Busse, J.W., Marepally, S.R., Yao, Y.: An Empirical Comparison of Rule Sets Induced by LERS and Probabilistic Rough Classification. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds.) RSCTC 2010. LNCS, vol. 6086, pp. 590–599. Springer, Heidelberg (2010)
Grzymala-Busse, J.W.: Rough set strategies to data with missing attribute values. In: Workshop Notes, Foundations and New Directions of Data Mining, in Conjunction with the 3rd International Conference on Data Mining, pp. 56–63 (2003)
Grzymała-Busse, J.W.: Data with Missing Attribute Values: Generalization of Indiscernibility Relation and Rule Induction. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Swiniarski, R., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 78–95. Springer, Heidelberg (2004)
Grzymała-Busse, J.W.: Generalized Parameterized Approximations. In: Yao, J., Ramanna, S., Wang, G., Suraj, Z. (eds.) RSKT 2011. LNCS, vol. 6954, pp. 136–145. Springer, Heidelberg (2011)
Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)
Grzymala-Busse, J.W.: A new version of the rule induction system LERS. Fundamenta Informaticae 31, 27–39 (1997)
Grzymala-Busse, J.W.: MLEM2: A new algorithm for rule induction from imperfect data. In: Proceedings of the 9th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, pp. 243–250 (2002)
Grzymala-Busse, J.W., Rząsa, W.: Definability and Other Properties of Approximations for Generalized Indiscernibility Relations. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets XI. LNCS, vol. 5946, pp. 14–39. Springer, Heidelberg (2010)
Kryszkiewicz, M.: Rough set approach to incomplete information systems. In: Proceedings of the Second Annual Joint Conference on Information Sciences, pp. 194–197 (1995)
Kryszkiewicz, M.: Rules in incomplete information systems. Information Sciences 113, 271–292 (1999)
Lin, T.Y.: Neighborhood systems and approximation in database and knowledge base systems. In: Proceedings of the ISMIS 1989, the Fourth International Symposium on Methodologies of Intelligent Systems, pp. 75–86 (1989)
Lin, T.Y.: Topological and fuzzy rough sets. In: Slowinski, R. (ed.) Intelligent Decision Support. Handbook of Applications and Advances of the Rough Sets Theory, pp. 287–304. Kluwer Academic Publishers, Dordrecht (1992)
Slowinski, R., Vanderpooten, D.: A generalized definition of rough approximations based on similarity. IEEE Transactions on Knowledge and Data Engineering 12, 331–336 (2000)
Stefanowski, J., Tsoukià s, A.: On the Extension of Rough Sets under Incomplete Information. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 73–82. Springer, Heidelberg (1999)
Stefanowski, J., Tsoukias, A.: Incomplete information tables and rough classification. Computational Intelligence 17(3), 545–566 (2001)
Yao, Y.Y.: Relational interpretations of neighborhood operators and rough set approximation operators. Information Sciences 111, 239–259 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Grzymala-Busse, J.W. (2013). Generalized Probabilistic Approximations. In: Peters, J.F., Skowron, A., Ramanna, S., Suraj, Z., Wang, X. (eds) Transactions on Rough Sets XVI. Lecture Notes in Computer Science, vol 7736. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36505-8_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-36505-8_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36504-1
Online ISBN: 978-3-642-36505-8
eBook Packages: Computer ScienceComputer Science (R0)