Skip to main content

Semantic Clustering of Scientific Articles Using Explicit Semantic Analysis

  • Chapter
Transactions on Rough Sets XVI

Part of the book series: Lecture Notes in Computer Science ((TRS,volume 7736))

Abstract

This paper summarizes our recent research on semantic clustering of scientific articles. We present a case study which was focused on analysis of papers related to the Rough Sets theory. The proposed method groups the documents on the basis of their content, with an assistance of the DBpedia knowledge base. The text corpus is first processed using Natural Language Processing tools in order to produce vector representations of the content. In the second step the articles are matched against a collection of concepts retrieved from DBpedia. As a result, a new representation that better reflects the semantics of the texts, is constructed. With this new representation the documents are hierarchically clustered in order to form a partitioning of papers into semantically related groups. The steps in textual data preparation, the utilization of DBpedia and the employed clustering methods are explained and illustrated with experimental results. A quality of the resulting clustering is then discussed. It is assessed using feedback form human experts combined with typical cluster quality measures. These results are then discussed in the context of a larger framework that aims to facilitate search and information extraction from large textual repositories.

This work was supported by the grant N N516 077837 from the Ministry of Science and Higher Education of the Republic of Poland, the Polish National Science Centre grant 2011/01/B/ST6/03867 and by the Polish National Centre for Research and Development (NCBiR) under Grant No. SP/I/1/77065/10 in frame of the strategic scientific research and experimental development program: “Interdisciplinary System for Interactive Scientific and Scientific-Technical Information”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beck, J., Sequeira, E.: PubMed Central (PMC): An archive for literature from life sciences journals. In: McEntyre, J., Ostell, J. (eds.) The NCBI Handbook, ch. 9. National Center for Biotechnology Information, Bethesda (2003), http://www.ncbi.nlm.nih.gov/books/NBK21087/

  2. Bembenik, R., Skonieczny, Ł., Rybiński, H., Niezgódka, M. (eds.): Intelligent Tools for Building a Scientific Information Platform. SCI, vol. 390. Springer, Heidelberg (2012)

    Google Scholar 

  3. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.: DBpedia – a crystallization point for the web of data. Journal of Web Semantics: Science, Services and Agents on the World Wide Web 7, 154–165 (2009)

    Article  Google Scholar 

  4. Feldman, R., Sanger, J. (eds.): The Text Mining Handbook. Cambridge University Press (2007)

    Google Scholar 

  5. Gabrilovich, E., Markovitch, S.: Computing semantic relatedness using Wikipedia-based explicit semantic analysis. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence, pp. 6–12 (2007)

    Google Scholar 

  6. Grochowalski, P., Suraj, Z.: RSDS - the Rough Set Database System - a bibliographic database on wide aspects of rough sets (2009), http://rsds.univ.rzeszow.pl/

  7. Janusz, A.: Dynamic Rule-Based Similarity Model for DNA Microarray Data. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets XV. LNCS, vol. 7255, pp. 1–25. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Janusz, A., Nguyen, H.S., Ślęzak, D., Stawicki, S., Krasuski, A.: JRS 2012 Data Mining Competition: Topical Classification of Biomedical Research Papers. In: Yao, J.T., Yang, Y., Słowiński, R., Greco, S., Li, H., Mitra, S., Polkowski, L. (eds.) RSCTC 2012. LNCS (LNAI), vol. 7413, pp. 422–431. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Janusz, A., Ślęzak, D., Nguyen, H.S.: Unsupervised similarity learning from textual data. Fundamenta Informaticae 119(3)

    Google Scholar 

  10. Janusz, A., Świeboda, W., Krasuski, A., Nguyen, H.S.: Interactive Document Indexing Method Based on Explicit Semantic Analysis. In: Yao, J.T., Yang, Y., Słowiński, R., Greco, S., Li, H., Mitra, S., Polkowski, L. (eds.) RSCTC 2012. LNCS (LNAI), vol. 7413, pp. 156–165. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Jones, K.S., Willet, P.: Readings in Information Retrieval. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  12. Kowalski, M., Ślęzak, D., Stencel, K., Pardel, P., Grzegorowski, M., Kijowski, M.: RDBMS model for scientific articles analytics. In: Bembenik, et al. [2], ch. 4, pp. 49–60

    Google Scholar 

  13. Manning, C., Raghavan, P., Schütze, H.: Introduction to information retrieval (2007) (online edition), http://nlp.stanford.edu/IR-book/

  14. Nguyen, A.L., Nguyen, H.S.: On designing the SONCA system. In: Bembenik et al. [2], ch. 2, pp. 9–35

    Google Scholar 

  15. Nguyen, H.S., Ślęzak, D., Skowron, A., Bazan, J.: Semantic search and analytics over large repository of scientific articles. In: Bembenik, et al. [2], ch. 1, pp. 1–8

    Google Scholar 

  16. R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2009), http://www.R-project.org

  17. Shinyama, Y.: PDFMiner: Python PDF parser and analyzer (2010), http://www.unixuser.org/~euske/python/pdfminer/

  18. Ślęzak, D., Janusz, A., Świeboda, W., Nguyen, H.S., Bazan, J.G., Skowron, A.: Semantic Analytics of PubMed Content. In: Holzinger, A., Simonic, K.-M. (eds.) USAB 2011. LNCS, vol. 7058, pp. 63–74. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  19. Ślęzak, D., Wróblewski, J., Eastwood, V., Synak, P.: Brighthouse: an analytic data warehouse for ad-hoc queries. PVLDB 1(2), 1337–1345 (2008)

    Google Scholar 

  20. Szczuka, M., Janusz, A., Herba, K.: Clustering of Rough Set Related Documents with Use of Knowledge from DBpedia. In: Yao, J., Ramanna, S., Wang, G., Suraj, Z. (eds.) RSKT 2011. LNCS, vol. 6954, pp. 394–403. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  21. Szczuka, M., Janusz, A., Herba, K.: Semantic clustering of scientific articles with use of DBpedia knowledge base. In: Bembenik, et al. [2], ch. 5, pp. 61–76

    Google Scholar 

  22. Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison Wesley, Boston (2006), http://www-users.cs.umn.edu/~kumar/dmbook/index.php

    Google Scholar 

  23. The DBPedia Community: The DBPedia knowledge base (2011), http://DBpedia.org/

  24. United States National Library of Medicine: Introduction to MeSH - 2011 (2011), http://www.nlm.nih.gov/mesh/introduction.html

  25. Wikipedia Community: Wikipedia - the free Encyclopedia (2011), http://en.wikipedia.org/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Szczuka, M., Janusz, A. (2013). Semantic Clustering of Scientific Articles Using Explicit Semantic Analysis. In: Peters, J.F., Skowron, A., Ramanna, S., Suraj, Z., Wang, X. (eds) Transactions on Rough Sets XVI. Lecture Notes in Computer Science, vol 7736. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36505-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36505-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36504-1

  • Online ISBN: 978-3-642-36505-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics