Skip to main content

Approximation of Sets Based on Partial Covering

  • Chapter
Transactions on Rough Sets XVI

Part of the book series: Lecture Notes in Computer Science ((TRS,volume 7736))

Abstract

In classic Pawlakian rough set theory the sets used to approximations are equivalence classes which are pairwise disjoint and cover the universe. In this article we give up not only the pairwise disjoint property but also the covering of the universe.

After a historical and philosophical background, we define a general set theoretic approximation framework. First, we reconstruct the rough set theory and partly restate its some well–known facts in the language of this framework.

Next, we present a special approximation scheme. It is based on the partial covering of the universe which is called the base system and denoted by \(\mathfrak{B}\). \(\mathfrak{B}\)-definable sets and lower and upper \(\mathfrak{B}\)-approximations are straightforward point–free generalizations of Pawlakian ones. We study such notions as single–layered base systems, \(\mathfrak{B}\)-representations of \(\mathfrak{B}\)-definable sets, and the exactness of sets. It is a well–known fact that the Pawlakian upper and lower approximations form a Galois connection. We clarify which conditions have to be satisfied by the upper and lower \(\mathfrak{B}\)-approximations so that they form a (regular) Galois connection. Excluding the cases when the empty set is the upper \(\mathfrak{B}\)-approximation of certain nonempty sets gives rise to a partial upper \(\mathfrak{B}\)-approximation map. We also clear up that a partial upper \(\mathfrak{B}\)-approximation map and a total lower \(\mathfrak{B}\)-approximation map form a partial Galois connection.

In order to demonstrate the effectiveness of our approach we present three real–life examples in the last section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Csajbók, Z.: Approximation of Sets Based on Partial Covering. PhD thesis, University of Debrecen, Debrecen (2011); Supervisors: Dr. Tamás Mihálydeák CSc and Prof. Attila Pethő

    Google Scholar 

  2. Pawlak, Z.: Information systems theoretical foundations. Information Systems 6(3), 205–218 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  3. Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11(5), 341–356 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  4. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)

    MATH  Google Scholar 

  5. Pawlak, Z., Skowron, A.: Rough sets: Some extensions. Information Sciences 177, 28–40 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Skowron, A.: Vague concepts: A rough-set approach. In: De Baets, B., De Caluwe, R., De Tré, G., Fodor, J., Kacprzyk, J., Zadrożny, S. (eds.) Proceedings of EUROFUSE 2004, pp. 480–493. Akademicka Oficyna Wydawnicza EXIT, Warszawa (2004)

    Google Scholar 

  7. Skowron, A.: On topology in information system. Bulletin of the Polish Academy of Sciences, Mathematics 36, 477–479 (1988)

    MathSciNet  MATH  Google Scholar 

  8. Xu, F., Yao, Y.Y., Miao, D.: Rough Set Approximations in Formal Concept Analysis and Knowledge Spaces. In: An, A., Matwin, S., Raś, Z.W., Ślęzak, D. (eds.) Foundations of Intelligent Systems. LNCS (LNAI), vol. 4994, pp. 319–328. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Yao, Y., Chen, Y.: Rough Set Approximations in Formal Concept Analysis. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets V. LNCS, vol. 4100, pp. 285–305. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Yao, Y.Y.: On Generalizing Rough Set Theory. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) RSFDGrC 2003. LNCS (LNAI), vol. 2639, pp. 44–51. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Rasiowa, H., Skowron, A.: Rough Concept Logic. In: Skowron, A. (ed.) SCT 1984. LNCS, vol. 208, pp. 288–297. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  12. Rasiowa, H., Skowron, A.: Approximation logic. In: Bibel, W., Jantke, K.P. (eds.) Mathematical Methods of Specification and Synthesis of Software Systems. Mathematical Research, vol. 31, pp. 123–139. Akademie Verlag, Berlin (1985)

    Google Scholar 

  13. Yao, Y.Y., Lin, T.Y.: Generalization of rough sets using modal logics. Intelligent Automation and Soft Computing, An International Journal 2, 103–120 (1996)

    Google Scholar 

  14. Orlowska, E.S.: Logic of vague concepts. Bulletin of the Section of Logic 11(3-4), 115–126 (1982)

    MathSciNet  MATH  Google Scholar 

  15. Orlowska, E.: Algebraic Aspects of the Relational Knowledge Representation: Modal Relation Algebras. In: Pearce, D., Wansing, H. (eds.) All-Berlin 1990. LNCS, vol. 619, pp. 1–22. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  16. Balbiani, P., Iliev, P., Vakarelov, D.: A modal logic for Pawlak’s approximation spaces with rough cardinality n. Fundam. Inform. 83(4), 451–464 (2008)

    MathSciNet  MATH  Google Scholar 

  17. Vakarelov, D.: A Modal Characterization of Indiscernibility and Similarity Relations in Pawlak’s Information Systems. In: Ślęzak, D., Wang, G., Szczuka, M.S., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3641, pp. 12–22. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  18. Nenov, Y., Vakarelov, D.: Modal logics for mereotopological relations. In: Areces, C., Goldblatt, R. (eds.) Advances in Modal Logic, College Publications, pp. 249–272 (2008)

    Google Scholar 

  19. Järvinen, J., Kondo, M., Kortelainen, J.: Modal-like operators in boolean lattices, Galois connections and fixed points. Fundamenta Informaticae 76(1-2), 129–145 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Zhu, W., Wang, F.Y.: On three types of covering-based rough sets. IEEE Trans. Knowl. Data Eng. 19(8), 1131–1144 (2007)

    Article  Google Scholar 

  21. Lin, T.Y.: Update and illustration on granular computing: Practices, theory and future directions. In: Hu, X., Lin, T.Y., Raghavan, V.V., Grzymala-Busse, J.W., Liu, Q., Broder, A.Z. (eds.) 2010 IEEE International Conference on Granular Computing, GrC 2010, San Jose, California, USA, August 14-16, pp. 32–33. IEEE Computer Society (2010)

    Google Scholar 

  22. Skowron, A., Swiniarski, R., Synak, P.: Approximation Spaces and Information Granulation. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets III. LNCS, vol. 3400, pp. 175–189. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  23. Skowron, A., Stepaniuk, J.: Information granules: Towards foundations of granular computing. International Journal of Intelligent Systems 16(1), 57–85 (2001)

    Article  MATH  Google Scholar 

  24. Yao, Y.Y.: Information granulation and rough set approximation. International Journal of Intelligent Systems 16(1), 87–104 (2001)

    Article  MATH  Google Scholar 

  25. Zadeh, L.A.: Granular Computing and Rough Set Theory. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 1–4. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  26. Polkowski, L., Skowron, A., Żytkow, J.: Rough foundations for rough sets. In: Lin, T.Y., Wildberger, A.M. (eds.) Soft Computing: Rough Sets, Fuzzy Logic, Neural Networks, Uncertainty Management, Knowledge Discovery, pp. 55–58. Simulation Councils, Inc., San Diego (1995)

    Google Scholar 

  27. Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Informaticae 27(2-3), 245–253 (1996)

    MathSciNet  MATH  Google Scholar 

  28. Słowiński, R., Vanderpooten, D.: Similarity relation as a basis for rough approximations. In: Wang, P. (ed.) Advances in Machine Intelligence and Soft-Computing, vol. IV, pp. 17–33. Duke University Press, Durham (1997)

    Google Scholar 

  29. Nieminen, J.: Rough tolerance equality. Fundamenta Informaticae 11, 289–294 (1988)

    MathSciNet  MATH  Google Scholar 

  30. Marcus, S.: Tolerance rough sets, C̆ech topology, learning processes. Bulletin of the Polish Academy of Sciences, Technical Sciences 42(3), 471–478 (1994)

    MATH  Google Scholar 

  31. Järvinen, J.: Lattice Theory for Rough Sets. In: Peters, J.F., Skowron, A., Düntsch, I., Grzymała-Busse, J.W., Orłowska, E., Polkowski, L. (eds.) Transactions on Rough Sets VI. LNCS, vol. 4374, pp. 400–498. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  32. Zhu, W.: Relationship between generalized rough sets based on binary relation and covering. Information Sciences 179(3), 210–225 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yao, Y.Y.: On Generalizing Pawlak Approximation Operators. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 298–307. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  34. Skowron, A., Stepaniuk, J.: Generalized approximation spaces. In: Lin, T., Wildberger, A. (eds.) The Third International Workshop on Rough Sets and Soft Computing Proceedings (RSSC 1994), November 10-12. San Jose State University, San Jose (1994)

    Google Scholar 

  35. Skowron, A., Stepaniuk, J.: Generalized approximation spaces. ICS Research Report 41/94, Warsaw University of Technology (1994)

    Google Scholar 

  36. Skowron, A., Stepaniuk, J.: Generalized approximation spaces. In: Lin, T., Wildberger, A. (eds.) Soft Computing, pp. 18–21. Simulation Councils, Inc., San Diego (1995)

    Google Scholar 

  37. Pawlak, Z., Polkowski, L., Skowron, A.: Rough sets: An approach to vagueness. In: Rivero, L.C., Doorn, J., Ferraggine, V. (eds.) Encyclopedia of Database Technologies and Applications, pp. 575–580. Idea Group Inc., Hershey (2005)

    Chapter  Google Scholar 

  38. Revett, K., Gorunescu, F., Salem, A.B.M.: Feature selection in parkinson’s disease: A rough sets approach. In: [119], pp. 425–428

    Google Scholar 

  39. Salem, A.B.M., Revett, K., El-Dahshan, E.S.A.: Machine learning in electrocardiogram diagnosis. In: [119], pp. 429–433

    Google Scholar 

  40. Zhu, P.: Covering rough sets based on neighborhoods: An approach without using neighborhoods. International Journal of Approximate Reasoning 52(3), 461–472 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Pawlak, Z., Skowron, A.: Rudiments of rough sets. Information Sciences 177(1), 3–27 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Pawlak, Z., Skowron, A.: Rough sets and boolean reasoning. Information Sciences 177(1), 41–73 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. Chikalov, I., Lozin, V., Lozina, I., Moshkov, M., Nguyen, H.S., Skowron, A., Zielosko, B.: Three Approaches to Data Analysis. ISRL, vol. 41. Springer, Heidelberg (2013)

    Book  MATH  Google Scholar 

  44. Skowron, A., Suraj, Z. (eds.): Rough sets and intelligent systems – Professor Zdzisław Pawlak in memoriam. Volume 1. ISRL, vol. 42. Springer, Heidelberg (2013)

    MATH  Google Scholar 

  45. Skowron, A., Suraj, Z. (eds.): Rough Sets and Intelligent Systems - Professor Zdzisław Pawlak in Memoriam. ISRL, vol. 43. Springer, Heidelberg (2013)

    Google Scholar 

  46. Skowron, A., Chakraborty, M.K., Grzymała-Busse, J., Marek, V., Pal, S.K., Peters, J., Rozenberg, G.: Ślęzak, D., Słowiński, R., Tsumoto, S., Wakulicz-Deja, A., Wang, G., Ziarko, W.: Professor Zdzisław Pawlak (1926-2006); Founder of the polish school of artificial intelligence. In: [44], 1–56

    Google Scholar 

  47. Skowron, A.: List of works by professor Zdzisław Pawlak (1926-2006). In: [44], 57–74

    Google Scholar 

  48. Nguyen, H.S., Skowron, A.: From rudiments to challenges. In: [44] 75–173

    Google Scholar 

  49. Keefe, R.: Theories of Vagueness. Cambridge Studies in Philosophy. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  50. Pawlak, Z.: Some Issues on Rough Sets. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B., Swiniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 1–58. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  51. Russell, B.: Vagueness. Australasian Journal of Philosophy and Psychology 1, 84–92 (1923)

    Article  Google Scholar 

  52. Sorensen, R.: Vagueness. In: Zalta, E. N. (ed.): The Stanford Encyclopedia of Philosophy (Fall 2008 Edition), http://plato.stanford.edu/archives/fall2008/entries/vagueness/ (updated on August 29, 2006), (last accesed on November 6, 2012)

  53. Keefe, R., Smith, P.: Introduction: Theories of vagueness. In: [44] 1–57

    Google Scholar 

  54. Priest, G.: A site for sorites. In: Beall, J.C. (ed.) Liars and Heaps: New Essays on Paradox, pp. 9–23. Oxford University Press Inc., New York (2003)

    Google Scholar 

  55. Varzi, A.C.: Cut-offs and their neighbors. In: Beall, J.C. (ed.) Liars and Heaps: New Essays on Paradox, pp. 24–38. Oxford University Press Inc., New York (2003)

    Google Scholar 

  56. Keefe, R., Smith, P. (eds.): Vagueness: A Reader. MIT Press, Cambridge (1996)

    Google Scholar 

  57. American Association for Clinical Chemistry: Lab tests online. Glucose, http://labtestsonline.org/understanding/analytes/glucose/tab/glance (updated on March 23, 2012), (last accessed on November 7, 2012)

  58. Frege, G.: Grundgesetzen der Arithmetik, begriffsschriftlich abgeleitet, vol. 2. Verlag von Hermann Pohle, Jena (1903)

    Google Scholar 

  59. Peirce, C.S.: Vague. In: Baldwin, J.M. (ed.) Dictionary of Philosophy and Psychology, vol. 748. MacMillan, New York (1902)

    Google Scholar 

  60. Pawlak, Z.: Vagueness - A Rough Set View. In: Mycielski, J., Rozenberg, G., Salomaa, A. (eds.) Structures in Logic and Computer Science. LNCS, vol. 1261, pp. 106–117. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  61. Skowron, A.: Rough sets and vague concepts. Fundamenta Informaticae 64(1-4), 417–431 (2005)

    MathSciNet  MATH  Google Scholar 

  62. Zadeh, L.A.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  63. Dubois, D., Esteva, F., Godo, L., Prade, H.: An information-based discussion of vagueness. In: Lefebvre, C., Cohen, H. (eds.) Handbook of Categorization in Cognitive Science, pp. 892–913. Elsevier (2005); Part 8. Machine Category learning

    Google Scholar 

  64. Lin, T.Y.: Approximation Theories: Granular Computing vs Rough Sets. In: Chan, C.-C., Grzymala-Busse, J.W., Ziarko, W.P. (eds.) RSCTC 2008. LNCS (LNAI), vol. 5306, pp. 520–529. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  65. Lin, T.Y.: Granular computing: Practices, theories, and future directions. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science, pp. 4339–4355. Springer, Heidelberg (2009)

    Google Scholar 

  66. Odifreddi, P.: Classical Recursion Theory. The Theory of Functions and Sets of Natural Numbers. Studies in Logic and the Foundations of Mathematics, vol. 125. Elsevier, Amsterdam (1989)

    MATH  Google Scholar 

  67. Yao, Y., Yao, B.: Covering based rough set approximations. Information Sciences 200, 91–107 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  68. Düntsch, I., Gediga, G.: Approximation Operators in Qualitative Data Analysis. In: de Swart, H., Orłowska, E., Schmidt, G., Roubens, M. (eds.) TARSKI 2003. LNCS, vol. 2929, pp. 214–230. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  69. Ciucci, D.: A Unifying Abstract Approach for Rough Models. In: Wang, G., Li, T., Grzymala-Busse, J.W., Miao, D., Skowron, A., Yao, Y. (eds.) RSKT 2008. LNCS (LNAI), vol. 5009, pp. 371–378. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  70. Csajbók, Z.: Partial approximative set theory: A generalization of the rough set theory. In: Martin, T., Muda, A.K., Abraham, A., Prade, H., Laurent, A., Laurent, D., Sans, V. (eds.) Proceedings of SoCPaR 2010, December 7-10, pp. 51–56. IEEE, Cergy Pontoise (2010)

    Google Scholar 

  71. Csajbók, Z.: A security model for personal information security management based on partial approximative set theory. In: Ganzha, M., Paprzycki, M. (eds.) Proceedings of the International Multiconference on Computer Science and Information Technology (IMCSIT 2010), Wisła, Poland, October 18–20, pp. 839–845. Polskie Towarzystwo Informatyczne – IEEE Computer Society Press, Los Alamitos (2010)

    Google Scholar 

  72. Pomykała, J.A.: Some remarks on approximation. Demonstratio Mathematica 24(1-2), 95–104 (1991)

    MathSciNet  MATH  Google Scholar 

  73. Zakowski, W.: Approximations in the space (U,Π). Demonstratio Mathematica 16(3), 761–769 (1983)

    MathSciNet  MATH  Google Scholar 

  74. Ciucci, D.: Approximation algebra and framework. Fundamenta Informaticae 94, 147–161 (2009)

    MathSciNet  MATH  Google Scholar 

  75. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  76. Denecke, K., Erné, M., Wismath, S. (eds.): Galois Connections and Applications. Kluwer Academic Publishers, Dordrecht (2004)

    MATH  Google Scholar 

  77. Csajbók, Z.: Approximation of sets based on partial covering. Theoretical Computer Science 412(42), 5820–5833 (2011); Rough Sets and Fuzzy Sets in Natural Computing

    Google Scholar 

  78. Csajbók, Z.: Simultaneous anomaly and misuse intrusion detections based on partial approximative set theory. In: Cotronis, Y., Danelutto, M., Papadopoulos, G.A. (eds.) Proceedings of PDP 2011, February 9-11, pp. 651–655. IEEE Computer Society Press, Los Alamitos (2011)

    Google Scholar 

  79. Csajbók, Z., Mihálydeák, T.: General Tool-Based Approximation Framework Based on Partial Approximation of Sets. In: Kuznetsov, S.O., Ślęzak, D., Hepting, D.H., Mirkin, B.G. (eds.) RSFDGrC 2011. LNCS, vol. 6743, pp. 52–59. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  80. Birkhoff, G.: Lattice theory, 3rd edn., vol. 25. Colloquium Publications. American Mathematical Society, Providence, Rhode Island (1967)

    MATH  Google Scholar 

  81. Gierz, G., Hofmann, K., Keimel, K., Lawson, J., Mislove, M., Scott, D.: Continuous Lattices and Domains. Encyclopedia of Mathematics and its Applications, vol. 93. Cambridge University Press (2003)

    Google Scholar 

  82. Grätzer, G.: General Lattice Theory. Birkhäuser Verlag, Basel und Stuttgart (1978)

    Book  Google Scholar 

  83. Miné, A.: Weakly Relational Numerical Abstract Domains. PhD thesis, École Polytechnique, Palaiseau, France (December 2004)

    Google Scholar 

  84. Pagliani, P., Chakraborty, M.: A Geometry of Approximation: Rough Set Theory Logic, Algebra and Topology of Conceptual Patterns (Trends in Logic). Springer Publishing Company, Incorporated (2008)

    Google Scholar 

  85. Järvinen, J.: Lattice Theory for Rough Sets. In: Peters, J.F., Skowron, A., Düntsch, I., Grzymała-Busse, J.W., Orłowska, E., Polkowski, L. (eds.) Transactions on Rough Sets VI. LNCS, vol. 4374, pp. 400–498. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  86. Csajbók, Z.: On the partial approximation of sets. Acta Medicinae et Sociologica 2(2), 143–152 (2011)

    Google Scholar 

  87. Salomaa, A.: Computation and automata. In: Encyclopedia of Mathematics and its Applications, vol. 25. Cambridge University Press, New York (1985)

    Google Scholar 

  88. Stadler, P.F., Stadler, B.M.R.: Genotype phenotype maps. Biological Theory 3, 268–279 (2006)

    Article  Google Scholar 

  89. Zhu, W., Wang, F.Y.: Reduction and axiomization of covering generalized rough sets. Information Sciences 152(1), 217–230 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  90. Yang, T., Li, Q.: Reduction about approximation spaces of covering generalized rough sets. International Journal of Approximate Reasoning 51(3), 335–345 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  91. Mihálydeák, T.: On tarskian models of general type-theoretical languages. In: Drossos, C., Peppas, P., Tsinakis, C. (eds.) Proceedings of the 7th Panhellenic Logic Symposium, pp. 127–131. Patras University Press, Patras (2009)

    Google Scholar 

  92. Järvinen, J.: Properties of rough approximations. Journal of Advanced Computational Intelligence and Intelligent Informatics 9(5), 502–505 (2005)

    Google Scholar 

  93. Järvinen, J.: Pawlak’s information systems in terms of Galois connections and functional dependencies. Fundamenta Informaticae 75(1-4), 315–330 (2007)

    MathSciNet  MATH  Google Scholar 

  94. Kari, L., Rozenberg, G.: The many facets of natural computing. Communications of the ACM 51(10), 72–83 (2008)

    Article  Google Scholar 

  95. Krasser, D., Horváth, F., Illyés, E., Molnár, Z., Biró, M., Botta-Dukát, Z., Bölöni, J., Oláh, K.: MÉTA programme - Vegetation Heritage of Hungary, http://www.novenyzetiterkep.hu/?q=en/english/node/70 (updated on September 9, 2012), (last accessed on November 7, 2012)

  96. Molnár, Z., Bartha, S., Seregélyes, T., Illyés, E., Botta-Dukát, Z., Tímár, G., Horváth, F., Révész, A., Kun, A., Bölöni, J., Biró, M., Bodonczi, L., Deák, A.J., Fogarasi, P., Horváth, A., Isépy, I., Karas, L., Kecskés, F., Molnár, C., Ortmann-né Ajkai, A., Rév, S.: A grid-based, satellite-image supported multi-attributed vegetation mapping method (MÉTA). Folia Geobotanica 42, 225–247 (2007)

    Article  Google Scholar 

  97. Bölöni, J., Molnár, Z., Illyés, E., Kun, A.: A new habitat classification and manual for standardized habitat mapping. Annali di Botanica Nuova Serie 7, 105–126 (2007)

    Google Scholar 

  98. Horváth, F., Molnár, Z., Bölöni, J., Pataki, Z., Polgár, L., Révész, A., Oláh, K., Krasser, D., Illyés, E.: Fact sheet of the MÉTA database 1.2. Acta Botanica Hungarica 50(suppl.), 11–34 (2008)

    Google Scholar 

  99. Takács, G., Molnár, Z. (eds.): National Biodiversity Monitoring System XI. Habitat mapping. MTA Ökológiai éés Botanikai Kutatóintézete (Institute of Ecology and Botany of the Hungarian Academy of Sciences) (Vácrátót) and Környezetvédelmi és Vízügyi Minisztérium (Ministry of Environment and Water) (Budapest), Vácrátót (2009)

    Google Scholar 

  100. Fekete, G., Molnár, Z., Hotváth, F. (eds.): A magyarországi élőhelyek leírása és hatáározókönyve. A Nemzeti Élőhely-osztályozási Rendszer (Guide and description of the Hungarian habitats. The National Habitat Classification System). Természettudományi Múzeum, Budapest (1997) (in Hungarian)

    Google Scholar 

  101. Bölöni, J., Kun, A., Molnár, Z.: Élőhely-ismereti Útmutató (Habitat guide). MTA Ökológiai éés Botanikai Kutatóintézete (Institute of Ecology and Botany of the Hungarian Academy of Sciences), Vácrátót (2003) (in Hungarian)

    Google Scholar 

  102. Molnár, Z., Biró, M., Bölöni, J.: Appendix - English names of the Á-NÉR habitat types. Acta Botanica Hungarica 50(supl.), 249–255 (2008)

    Article  Google Scholar 

  103. Molnár, Z., Bölöni, J., Horváth, F.: Threating factors encountered: Actual endangerment of the hungarian (semi-)natural habitats. Acta Botanica Hungarica 50(supl.), 199–217 (2008)

    Article  Google Scholar 

  104. Anderson, R.J.: Security Engineering: A Guide to Building Dependable Distributed Systems, 2nd edn. Wiley (2008)

    Google Scholar 

  105. Senior Officials Group-Information Systems Security: Information Technology Security Evaluation Criteria (ITSEC). Department of Trade and Industry (1991)

    Google Scholar 

  106. Caelli, W., Longley, D., Shain, M.: Information security handbook. Stockton Press, New York (1991)

    Google Scholar 

  107. Goguen, J.A., Meseguer, J.: Security policies and security models. In: Proceedings of the IEEE Symposium on Research in Security and Privacy, pp. 11–20. IEEE Computer Society Press, Oakland (1982)

    Google Scholar 

  108. Bishop, M.: Computer Security: Art and Science. Addison Wesley (2002)

    Google Scholar 

  109. Beghdad, R.: Modelling and solving the intrusion detection problem in computer networks. Computers & Security 23(8), 687–696 (2004)

    Article  Google Scholar 

  110. Wang, G., Long, C., Yu, W.: Rough set based solutions for network security. In: Dunin-Keplicz, B., Jankowski, A., Skowron, A., Szczuka, M. (eds.) Monitoring. Security, and Rescue Techniques in Multiagent Systems. AISC, vol. 28, pp. 455–465. Springer, Berlin (2005)

    Chapter  Google Scholar 

  111. Wang, W., Guan, X., Zhang, X., Yang, L.: Profiling program behavior for anomaly intrusion detection based on the transition and frequency property of computer audit data. Computers & Security 25(7), 539–550 (2006)

    Article  Google Scholar 

  112. Denning, D.E.: An intrusion-detection model. IEEE Transactions on Software Engineering SE-13(2), 222–232 (1987)

    Google Scholar 

  113. Bauer, L., Ligatti, J., Walker, D.: More enforceable security policies. In: Foundations of Computer Security, Copenhagen, Denmark (July 2002)

    Google Scholar 

  114. Ciucci, D.: Orthopairs: A simple and widely usedway to model uncertainty. Fundamenta Informaticae 108(3-4), 287–304 (2011)

    MathSciNet  MATH  Google Scholar 

  115. Iwinski, T.: Algebras for rough sets. Bulletin of the Polish Academy of Sciences, Series: Mathematics 35, 673–683 (1987)

    MathSciNet  MATH  Google Scholar 

  116. Yao, Y., Li, X.: Comparison of rough-set and interval-set models for uncertain reasoning. Fundamenta Informaticae 27(2, 3), 289–298 (1996)

    Google Scholar 

  117. Dubois, D., Prade, H.: An introduction to bipolar representations of information and preference. International Journal of Intelligent Systems 23(8), 866–877 (2008)

    Article  MATH  Google Scholar 

  118. Lavrač, N., Džeroski, S.: Inductive Logic Programming: Techniques and Applications. Ellis Horwood, New York (1994)

    MATH  Google Scholar 

  119. Proceedings of the International Multiconference on Computer Science and Information Technology. In: IMCSIT 2009, Mragowo, Poland, October 12-14. Polskie Towarzystwo Informatyczne - IEEE Computer Society Press (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Csajbók, Z.E. (2013). Approximation of Sets Based on Partial Covering. In: Peters, J.F., Skowron, A., Ramanna, S., Suraj, Z., Wang, X. (eds) Transactions on Rough Sets XVI. Lecture Notes in Computer Science, vol 7736. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36505-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36505-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36504-1

  • Online ISBN: 978-3-642-36505-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics