Skip to main content

Investigation of Mixture of Experts Applied to Residential Premises Valuation

  • Conference paper
Intelligent Information and Database Systems (ACIIDS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7803))

Included in the following conference series:

Abstract

Several experiments were conducted in order to investigate the usefulness of mixture of experts approach to an online internet system assisting in real estate appraisal. All experiments were performed using real-world datasets taken from a cadastral system. The analysis of the results was performed using statistical methodology including nonparametric tests followed by post-hoc procedures designed especially for multiple 1×N and N×N comparisons. The mixture of experts architectures studied in the paper comprised: four algorithms used as expert networks: glm – general linear model, mlp – multilayer perceptron and two support vector regression ε-SVR and ν-SVR as well as and three algorithms glm, mlp, and gmm – gaussian mixture model employed as gating networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E.: Adaptive mixtures of local experts. Neural Computation 3, 79–87 (1991)

    Article  Google Scholar 

  2. Jordan, M.I., Jacobs, R.A.: Hierachical mixtures of experts and the EM algorithm. Neural Computation 6, 181–214 (1994)

    Article  Google Scholar 

  3. Avnimelech, R., Intrator, N.: Boosted mixture of experts: An ensemble learning scheme. Neural Computation 11(2), 483–497 (1999)

    Article  Google Scholar 

  4. Srivastava, A.N., Su, R., Weigend, A.S.: Data mining for features using scale-sensitive gated experts. IEEE Transactions on Pattern Analysis and Machine Intelligence 21, 1268–1279 (1999)

    Article  Google Scholar 

  5. Lima, C.A.M., Coelho, A.L.V., Von Zuben, F.J.: Hybridizing mixtures of experts with support vector machines: Investigation into nonlinear dynamic systems identification. Information Sciences 177(10), 2049–2074 (2007)

    Article  Google Scholar 

  6. Masoudnia, S., Ebrahimpour, R.: Mixture of experts: a literature survey. Artificial Intelligence Review (2012), doi:10.1007/s10462-012-9338-y

    Google Scholar 

  7. Yuksel, S.E., Wilson, J.N., Gader, P.D.: Twenty Years of Mixture of Experts. IEEE Transactions on Neural Networks and Learning Systems 23(8), 1177–1193 (2012)

    Article  Google Scholar 

  8. Jianping, D., Bouchard, M., Yeap, T.H.: Linear Dynamic Models With Mixture of Experts Architecture for Recognition of Speech Under Additive Noise Conditions. IEEE Signal Processing Letters 13(9), 573–576 (2006)

    Article  Google Scholar 

  9. Ebrahimpour, R., Kabir, E., Esteky, H., Yousefi, M.R.: View-independent face recognition with Mixture of Experts. Neurocomputing 71, 1103–1107 (2008)

    Article  Google Scholar 

  10. Ebrahimpour, R., Sarhangi, S., Sharifizadeh, F.: Mixture of Experts for Persian Handwritten Word Recognition. Iranian Journal of Electrical & Electronic Engineering 7(4), 217–224 (2011)

    Google Scholar 

  11. Yoon, J.-W., Yang, S.-I., Cho, S.-B.: Adaptive mixture-of-experts models for data glove interface with multiple users. Expert Systems with Applications 39(5), 4898–4907 (2012)

    Article  Google Scholar 

  12. Caragea, C., Sinapov, J., Dobbs, D., Honavar, V.: Mixture of experts models to exploit global sequence similarity on biomolecular sequence labeling. BMC Bioinformatics 10(suppl. 4), S4 (2009)

    Google Scholar 

  13. Goodband, J.H., Haas, O.C.L., Mills, J.A.: A mixture of experts committee machine to design compensators for intensity modulated radiation therapy. Pattern Recognition 39, 1704–1714 (2006)

    Article  MATH  Google Scholar 

  14. Güler, I., Übeyli, E.D.: A modified mixture of experts network structure for ECG beats classification with diverse features. Engineering Applications of Artificial Intelligence 18, 845–856 (2005)

    Article  Google Scholar 

  15. Yumlu, M.S., Gurgen, F.S., Okay, N.: Financial time series prediction using mixture of experts. In: Proc. 18th Int. Symp. Comput. Inf. Sci., pp. 553–560 (2003)

    Google Scholar 

  16. Weigend, A.S., Shi, S.: Predicting daily probability distributions of S&P500 returns. J. Forecast. 19(4), 375–392 (2000)

    Article  Google Scholar 

  17. Cheung, Y.M., Leung, W.M., Xu, L.: Application of mixture of experts model to financial time series forecasting. In: Proc. Int. Conf. Neural Netw. Signal Process., pp. 1–4 (1995)

    Google Scholar 

  18. Graczyk, M., Lasota, T., Telec, Z., Trawiński, B.: Application of Mixture of Experts to Construct Real Estate Appraisal Models. In: Graña Romay, M., Corchado, E., Garcia Sebastian, M.T. (eds.) HAIS 2010, Part I. LNCS, vol. 6076, pp. 581–589. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  19. Basak, D., Pal, S., Patranabis, D.C.: Support Vector Regression. Neural Information Processing – Letters and Reviews 11(10), 203–224 (2007)

    Google Scholar 

  20. Makhoul, J.: Linear prediction. A Tutorial Review. Proceedings of the IEEE 63(4), 561–580 (1975)

    Article  Google Scholar 

  21. Smola, A.J., Schölkopf, B.: A Tutorial on Support Vector Regression. Statistics and Computing 14, 199–222 (2004)

    Article  MathSciNet  Google Scholar 

  22. Chang, C.C., Lin, C.J.: Training ν-support vector regression: Theory and algorithms. Neural Computation 14, 1959–1976 (2002)

    Article  MATH  Google Scholar 

  23. Yuan, C., Neubauer, C.: Variational mixture of Gaussian process experts. In: Koller, D., et al. (eds.) Advances in Neural Information Processing Systems, vol. 21, pp. 1897–1904. MIT Press, Cambridge (2009)

    Google Scholar 

  24. Moerland, P.: Some methods for training mixtures of experts, Technical Report IDIAP-Com 97-05, IDIAP Research Institute (1997)

    Google Scholar 

  25. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7, 1–30 (2006)

    MATH  Google Scholar 

  26. García, S., Herrera, F.: An Extension on “Statistical Comparisons of Classifiers over Multiple Data Sets” for all Pairwise Comparisons. Journal of Machine Learning Research 9, 2677–2694 (2008)

    MATH  Google Scholar 

  27. Luengo, J., García, S., Herrera, F.: A Study on the Use of Statistical Tests for Experimentation with Neural Networks: Analysis of Parametric Test Conditions and Non-Parametric Tests. Expert Systems with Applications 36, 7798–7808 (2009)

    Article  Google Scholar 

  28. Trawiński, B., Smętek, M., Telec, Z., Lasota, T.: Nonparametric Statistical Analysis for Multiple Comparison of Machine Learning Regression Algorithms. International Journal of Applied Mathematics and Computer Science 22(4) (2012) (in print)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lasota, T., Londzin, B., Trawiński, B., Telec, Z. (2013). Investigation of Mixture of Experts Applied to Residential Premises Valuation. In: Selamat, A., Nguyen, N.T., Haron, H. (eds) Intelligent Information and Database Systems. ACIIDS 2013. Lecture Notes in Computer Science(), vol 7803. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36543-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36543-0_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36542-3

  • Online ISBN: 978-3-642-36543-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics