Abstract
Automatic integration of bibliographical data from various sources is a really critical task in the field of digital libraries. One of the most important challenges for this process is the author name disambiguation. In this paper, we applied supervised learning approach and proposed a set of features that can be used to assist training classifiers in disambiguating Vietnamese author names. In order to evaluate efficiency of the proposed features set, we did experiments on five supervised learning methods: Random Forest, Support Vector Machine (SVM), k-Nearest Neighbors (kNN), C4.5 (Decision Tree), Bayes. The experiment dataset collected from three online digital libraries such as Microsoft Academic Search, ACM Digital Library, IEEE Digital Library. Our experiments shown that kNN, Random Forest, C4.5 classifier outperform than the others. The average accuracy archived with kNN approximates 94.55%, random forest is 94.23%, C4.5 is 93.98%, SVM is 91.91% and Bayes is lowest with 81.56%. Summary, we archived the highest accuracy 98.39% for author name disambiguation problem with the proposed feature set in our experiments on the Vietnamese authors dataset.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bilenko, M., Mooney, R., Cohen, W., Ravikumar, P., Fienberg, S.: Adaptive name matching in information integration. IEEE Intelligent Systems 18(5), 16–23 (2003)
Cohen, W.W., Ravikumar, P.D., Fienberg, S.E.: A comparison of string distance metrics for name-matching tasks. In: IIWeb, pp. 73–78 (2003)
Ferreira, A.A., Gonçalves, M.A., Laender, A.H.: A brief survey of automatic methods for author name disambiguation. SIGMOD Rec. 41(2), 15–26 (2012)
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009)
Han, H., Giles, L., Zha, H., Li, C., Tsioutsiouliklis, K.: Two supervised learning approaches for name disambiguation in author citations. In: Proceedings of the 4th ACM/IEEE-CS Joint Conference on Digital Libraries, JCDL 2004, pp. 296–305. ACM, New York (2004)
Han, H., Zha, H., Giles, C.L.: A model-based k-means algorithm for name disambiguation. In: Proceedings of Semantic Web Technologies for Searching and Retrieving Scientific Data, Florida, USA (October 20, 2003)
Han, H., Zha, H., Giles, C.L.: Name disambiguation in author citations using a k-way spectral clustering method. In: Proceedings of the 5th ACM/IEEE-CS Joint Conference on Digital Libraries, JCDL 2005, pp. 334–343. ACM, New York (2005)
Huang, J., Ertekin, S., Giles, C.L.: Efficient Name Disambiguation for Large-Scale Databases. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 536–544. Springer, Heidelberg (2006)
Huynh, T., Luong, H., Hoang, K.: Integrating Bibliographical Data of Computer Science Publications from Online Digital Libraries. In: Pan, J.-S., Chen, S.-M., Nguyen, N.T. (eds.) ACIIDS 2012, Part III. LNCS, vol. 7198, pp. 226–235. Springer, Heidelberg (2012)
Qian, Y., Hu, Y., Cui, J., Zheng, Q., Nie, Z.: Combining machine learning and human judgment in author disambiguation. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management, CIKM 2011, pp. 1241–1246. ACM, New York (2011)
Treeratpituk, P., Giles, C.L.: Disambiguating authors in academic publications using random forests. In: Proceedings of the 9th ACM/IEEE-CS Joint Conference on Digital Libraries, JCDL 2009, pp. 39–48. ACM, New York (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Huynh, T., Hoang, K., Do, T., Huynh, D. (2013). Vietnamese Author Name Disambiguation for Integrating Publications from Heterogeneous Sources. In: Selamat, A., Nguyen, N.T., Haron, H. (eds) Intelligent Information and Database Systems. ACIIDS 2013. Lecture Notes in Computer Science(), vol 7802. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36546-1_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-36546-1_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36545-4
Online ISBN: 978-3-642-36546-1
eBook Packages: Computer ScienceComputer Science (R0)